REGULATIONS, COURSE STRUCTURE AND SYLLABUS

Aligned with AICTE model Curriculum 2018-2019 SITE18(M) REGULATIONS

for

B.Tech.

Computer Science & Technology

With Effective from the academic year

2020-2021

REGULATIONS, COURSE STRUCTURE AND SYLLABUS

(Aligned with AICTE Model Curriculum

th "A" Grade on 2(f) &12(B) lew Delhi K, SBTET ovt. of A.P.

Chapter-I

UG Regulations

Chapter - I

B.Tech. Regulations

1.1 Short title and Commencement

The regulations listed under this head are common for all degree level under graduate programs (B.Tech.) offered by the college with effect from the academic year 2020-21 and they are called as "SITE18M" regulations.

The regulations here under are subject to amendments as may be made by the Academic Council of the college from time to time, keeping the recommendations of the Board of Studies in view. Any or all such amendments will be effective from such date and to such batches of candidates including those already undergoing the program, as may be decided by the Academic Council.

1.2. Definitions

- a. "Commission" means University Grants

 Commission (UGC)
- b. "Council" means All India Council for Technical Education (AICTE)
- c. "University" Means Jawaharlal Nehru
 Technological University Kakinada (JNTUK)

- d. "College" means Sasi Institute of Technology & Engineering, Tadepalligudem.
- e. "Program" Means any combination of courses and /or requirements leading to award of a degree
- f. "Course" Means a subject either theory or practical identified by its course title and code number and which is normally studied in a semester.
- g. For example, (Data Structures) is a course offered at third semester of B.Tech (CST) and its code is (18CTCTT3020)
- h. "Degree" means an academic degree conferred by the university upon those who complete the undergraduate curriculum
- i. "Regular Student" means student enrolled into the four year program in the first year
- j. "Lateral entry Students" Means student enrolled into the four year program in the second year

1.3. Academic Programs

1.3.1. Nomenclature of Programs

The nomenclature and its abbreviation given below shall continue to be used for the degree programs

under the University, as required by the Council and Commission. The name of specialization shall be indicated in brackets after the abbreviation. For e.g. UG engineering degree in Mechanical Engineering program is abbreviated as B.Tech. (ME). Bachelor of Technology (B.Tech.) degree program offered in:

- Artificial Intelligence and Machine Learning (AIML)
- 2. Civil Engineering(CE)
- 3. Computer Science and Engineering(CSE)
- 4. Computer Science and Technology(CST)
- Electronics and CommunicationEngineering(ECE)
- 6. Electronics and Communication Technology(ECT)
- 7. Electrical and Electronics Engineering(EEE)
- 8. Information Technology(IT)
- 9. Mechanical Engineering(ME)
- Curriculum framework is important in setting the right direction for a Degree program as it takes into account the type and quantum of knowledge necessary to be acquired by a student to qualify

- for a award in his/her chosen branch or specialization.
- Besides, this also helps in assigning the credits for each course, sequencing the courses semesterwise and finally arriving at the total number of courses to be studied and the total number of credits to be earned by a student to fulfil the requirements for conferment of degree.
- Each theory course shall consist of five units.

1.3.2. Curriculum Structure

The curriculum structure is designed in such a way that it facilitates the courses required to attain the expected knowledge, skills and attitude by the time of their graduation as per the needs of the stakeholders. The curriculum structure consists of various course categories (as described in 1.6.3 to 1.6.9) to cover the depth and breadth required for the program and for the attainment of program outcomes of the corresponding program. Each Program of study will be designed to have 40-45 theory courses and 16-18 laboratory courses. The distribution and types of courses offered from the above is indicated

in the following table 3.

1.3.3. Induction Program

The Induction Program for two weeks is designed to make the newly joined students feel comfortable, sensitize them towards exploring their academic interests and activities, reducing competition and making them work for excellence, promote bonding within them, build relations between teachers and students and building of character. Induction program covers:

- Physical activity
- Creative arts
- Universal human values
- Literary and Proficiency Units
- Lectures by Eminent peoples

1.4Admission Criteria

The eligibility criteria for admission into UG engineering programs are as per the norms approved by government of Andhra Pradesh from time to time. The sanctioned seats in each program in the college are classified into CATEGORY-A and CATEGORY-B at first year level and Lateral Entry at second year level.

- CATEGORY A Seats: These seats will be filled as per the norms approved by the Government of Andhra Pradesh.
- CATEGORY B Seats: These seats will be filled by the College as per the norms approved by the Government of Andhra Pradesh.
- CATEGORY Lateral Entry Seats: Lateral entry candidates shall be admitted into the Third semester directly as per the norms approved by government of Andhra Pradesh. The percentages of Category-A, Category-B and Lateral Entry Seats are decided time to time by the Government of Andhra Pradesh.

2. Award of B. Tech. Degree

- a) A student will be declared eligible for the award of B. Tech. Degree if he fulfils the following academic regulations:
 - i. A student shall be declared eligible for the award of B. Tech Degree, if he pursues a course of study in not less than four and not more than

eight academic years. After eight academic years from the year of their admission, he/she shall forfeit their seat in B.Tech course and their admission stands cancelled.

- The candidate shall register for 160 credits and secure all the 160 credits.
- b) The medium of instruction for the entire under graduate program in Engineering &Technology will be in <u>English</u> only.

3. Program Pattern:

- a) Total duration of the of B. Tech (Regular)
 Program is four academic years
- Each Academic year of study is divided into Two Semesters.
- c) Minimum number of instruction days in each semester is 90.
- d) Grade points, based on percentage of marks awarded for each course will form the basis for calculation of SGPA (Semester Grade Point Average) and CGPA (Cumulative Grade Point Average).
- e) The total credits for the Program is 160.

- f) Three week induction program is mandatory for all first year UG students and shall be conducted as per AICTE/UGC/APSCHE guidelines.
- g) Student is introduced to "Choice Based Credit System (CBCS)".
- h) A pool of interdisciplinary and job-oriented mandatory skill courses which are relevant to the industry are integrated into the curriculum of concerned branch of engineering (total five skill courses: two basic level skill courses, one on soft skills and other two on advanced level skill courses)
- A student has to register for all courses in a semester.
- j) All the registered credits will be considered for the calculation of final CGPA.
- k) Each semester has 'Continuous Internal Evaluation (CIE)' and 'Semester End Examination (SEE)'. Choice Based Credit System (CBCS) and Credit Based Semester System (CBSS) as indicated by UGC and course structure as suggested by AICTE are followed.

- A 10 months industry/field mandatory internship, both industry and social, during the summer vacation and also in the final semester to acquire the skills required for job and make engineering graduates to connect with the needs of the industry and society at large.
- m) All the students shall be mandatorily registered for NCC, NSS activities and Community Service Project as per the Government and University norms.
- Each college assign faculty n) shall a after admission to advisor/mentor each student or group of students from department to provide guidance in courses registration/career growth/placements/ opportunities for higher studies/GATE/other competitive exams etc.

4. Registration for Courses:

- a) In each semester a student shall mandatorily register courses which he/she wishes to pursue within a week from the starting of the class work with the advice of Head of the Department and mentor of the student of the concerned department of the college.
- b) If any student wishes to withdraw the registration of the course, he/she shall submit a letter to the Principal of the college through the Head of the Department and mentor within fifteen days.
- c) The concerned college shall thoroughly verify and upload the data/courses registered by each student in the university examination center within 20 days. The Principal of the concerned college shall ensure that there no wrong registration courses by the student. The university registration portal will be closed after 20 days.
- **5.** (a) **Award of B. Tech. Degree:** A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:

- i. A student shall be declared eligible for award of the B. Tech Degree, if he pursues a course of study in not less than four and not more than eight academic years. After eight academic years from the year of their admission, he/she shall **forfeit** their seat in B. Tech course and their admission stands cancelled.
- ii. The student shall register for 160 credits and must secure all the 160 credits.
- iii. All students shall mandatorily register for the courses like Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge etc., shall be included in the curriculum as non-credit mandatory courses. Environmental Sciences is to be offered compulsorily as mandatory course for all branches. A student has to secure at least 40% of the marks allotted in the internal evaluation for passing the course and shall maintain 75% of attendance in the subject.
- iv. All students shall mandatorily register for NCC/NSS activities and will be required to

participate in an activity specified by NSS officer during second and third semesters. Grade shall be awarded as Satisfactory or Unsatisfactory in the mark sheet on the basis of participation, attendance, performance and behavior. If a student gets an unsatisfactory Grade, he/she shall repeat the above activity in the subsequent years, in order to complete the degree requirements.

v. Credits are defined as per AICTE norms.

(b) Award of B. Tech. (Honor)/B. Tech. (Minor): B. Tech. with Honors or a B. Tech. with a Minor will be awarded if the student earns 20 additional credits are acquired as per the regulations/guidelines. The regulations/guidelines are separately provided. Registering for an Honors/Minor is optional.

6. Attendance Requirements

- a) A student is eligible to write the University examinations if he acquires a minimum of 40% in each subject and 75% of attendance in aggregate of all the subjects.
- b) Condonation of shortage of attendance in aggregate up to 10% (65% and above, and below 75%) may be granted by the College Academic Committee. However, this Condonation concession is applicable only to any two semesters during the entire program.
- Shortage of Attendance below 65% in aggregate shall not be condoned.
- d) A student who is short of attendance in a semester may seek re-admission into that semester when

- offered within 4 weeks from the date of commencement of class work.
- e) Students whose shortage of attendance is not condoned in any semester are not eligible to write their end semester examination of that class.
- f) A stipulated fee of Rs. 1000/- in the concerned semester shall be payable towards Condonation of shortage of attendance. Students availing Condonation on medical ground shall produce a medical certificate issued by the competitive authority.
- g) A student will be promoted to the next semester if he satisfies the (i) attendance requirement of the present semester and (ii) minimum required credits.
- h) If any candidate fulfills the attendance requirement in the present semester, he shall not be eligible for readmission into the same class.
- For induction program attendance shall be maintained as per AICTE norms.
- j) For non-credit mandatory courses the students shall maintain the attendance similar to credit courses

7. Evaluation-Distribution and Weightage of marks

- Paper setting and evaluation of the answer scripts shall be done as per the procedures laid down by the University Examination section from time to time.
- ii. To maintain the quality, external examiners and question paper setters shall be selected from reputed institutes like IISc, IITs, IIITs, IISERs, NITs and Universities.
- iii. For non-credit mandatory courses, like Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge, the student has to secure 40% of the marks allotted in the internal evaluation for passing the course. No marks or letter grade shall be allotted for all mandatory non-credit courses.
- iv. A student is deemed to have satisfied the minimum academic requirements if he has earned the credits allotted to each

theory/practical design/drawing subject/ project etc by securing not less than 35% of marks in the end semester exam and minimum 40% of marks in the sum total of the internal marks and end semester examination marks together.

v. Distribution and Weightage of marks:

The assessment of the student's performance in each course will be as per the details given:

S.N	Components	Interna	Externa	Tota
1	Theory	30	70	100
2	Engineering	30	70	100
3	Practical	15	35	50
4	Mini Project/Internship/Industr ial Training/ Skill	-	50	50
5	Project Work	60	140	200

vi. **Continuous Internal Theory Evaluation:**

a) For theory subjects, during a semester, there shall be two mid-term examinations. Each mid-term examination consists of (i) one online objective examination (20 multiple choice questions) for 10 marks for duration of 20 minutes (ii) one descriptive examination (3 full questions for 5

- marks each) for 15 marks for duration of 90 minutes and (iii) one assignment for marks. All the internal exams shall be conducted as per university norms from first 50% of the syllabi.
- b) In the similar lines, the second online, descriptive examinations assignment shall be conducted on the rest of the 50% syllabus.
- c) The total marks secured by the student in each mid-term examination are evaluated for 30 marks. The first mid marks (Mid-1) consisting of marks of online objective examination, descriptive examination and assignment shall be submitted to the University examination section within one week after completion of first mid examination.
- d) The mid marks submitted to the University examination section shall be displayed in the concerned college notice boards for the benefit of the students.
- e) If any discrepancy found in the submitted Mid-1 marks, it shall be brought to the notice of university examination section within one week from the submission.

- f) Second mid marks (Mid-2) consisting of marks of online objective examination, descriptive examination and assignment shall also be submitted to University examination section within one week after completion of second mid examination and it shall be displayed in the notice boards. If any discrepancy found in the submitted mid-2 marks, it shall be brought to the notice of university examination section within one week from the submission.
- g) Internal marks can be calculated with 80% Weightage for better of the two mids and 20% Weightage for other mid exam.

Example:

Mid-1 marks = Marks secured in

(Online examination-1 + descriptive examination-1 +one assignment-1)

Mid-2 marks = Marks secured in

(Online examination-2+descriptive examination-2+one assignment-2)

Final internal Marks = (Best of (Mid-1/Mid-2) marks x 0.8 + Least of (Mid-1/Mid-2) marks x 0.2)

h) With the above criteria, university examination section will send mid marks of all subjects in consolidated form to all the concerned colleges and same shall be displayed in the concerned college notice boards. If any discrepancy found, it shall be brought to the notice of university examination section through proper channel within one week with all proofs. Discrepancies brought after the given deadline will not be entertained under any circumstances.

vii. Semester End Theory Examinations Evaluation:

- a) The semester end examinations will be conducted university examination section for 70 marks consists of five questions carrying 14 marks each. Each of these questions is from one unit and may contain sub-questions. For each question there will be an "either" "or" choice, which means that there will be two questions from each unit and the student should answer either of the two questions.
- b) For practical subjects there shall be continuous evaluation during the semester for 15 internal marks and 35 end examination marks. The internal

- 15 marks shall be awarded as follows: day to day work 5 marks, Record-5 marks and the remaining 5 marks to be awarded by conducting an internal laboratory test. The end examination shall be conducted by the teacher concerned and external examiner appointed.
- c) For the subject having design and / or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 30 marks for internal evaluation (15 marks for continuous Assessment (day-to-day work) and 15 marks for internal tests) and 70 marks for end examination. There shall be two internal tests in a Semester for 15 marks each and final marks can be calculated with 80% Weightage for better of the two tests and 20% Weightage for other test and these are to be added to the marks obtained in day to day work.
- d) Evaluation of the summer internships: It shall be completed in collaboration with local industries, Govt. Organizations, construction agencies, Industries, Hydel and thermal power projects and

also in software MNCs in the area of concerned specialization of the UG program. Students shall pursue this course during summer vacation just before its offering as per course structure. The minimum duration of this course is at least 6 weeks. The student shall register for the course as per course structure after commencement of academic year. A supervisor/mentor/advisor has to be allotted to guide the students for taking up the summer internship. The supervisor shall monitor the attendance of the students while taking up the internship. Attendance requirements are as per the norms of the University. After successful completion, students shall submit a summer internship technical report to the concerned department and appear for an oral presentation before the departmental committee consists of an external examiner: Head of the Department; supervisor of the internship and a senior faculty member of the department. A certificate from industry/skill development center shall be included in the report. The report and the

oral presentation shall carry 40% and 60% Weightage respectively. It shall be evaluated for 50 external marks at the end of the semester. There shall be no internal marks for Summer Internship. A student shall secure minimum 40% of marks for successful completion. In case, if a student fails, he/she shall reappear as and when semester supplementary examinations are conducted by the University.

e) The job oriented skill courses may be registered at the college or at any accredited external agency. A student shall submit a record/report on the on the list skills learned. If the student completes job oriented skill course at external agency, a certificate from the agency shall be included in the report. The course will be evaluated at the end of the semester for 50 marks (record: 15 marks and viva-voce: 35 marks) along with laboratory end examinations in the presence of external and internal examiner (course instructor or mentor). There are no internal marks for the job oriented skill courses.

- (M.C): Environmental f) Mandatory Course Sciences, Universal Human Values, Ethics, Indian Constitution. Essence of Indian Traditional Knowledge etc non-credit (zero credits) mandatory courses. Environmental Sciences shall be offered compulsorily as mandatory course for all branches. A minimum of 75% attendance is mandatory in these subjects. There shall be an external examination for 70 marks and it shall be conducted by the college internally. Two internal examinations shall be conducted for 30 marks and a student has to secure at least 40% of the marks for passing the course. There is no online internal exam for mandatory courses. No marks or letter grade shall be printed in the transcripts for all mandatory non-credit courses, but only Completed (Y)/Notcompleted (N) will be specified.
- g) Procedure for Conduct and Evaluation of MOOC: There shall be a Discipline Centric Elective Course through Massive Open Online Course (MOOC) as Program Elective course. The student shall register for the course (Minimum of

12 weeks) offered by SWAYAM/NPTEL through online with the approval of Head of the Department. The Head of the Department shall appoint one mentor for each of the MOOC subjects offered. The student needs to register the course in the SWAYAM/NPTEL portal. During the course, the mentor monitors the student's assignment submissions given by SWAYAM /NPTEL. The student needs to submit all the assignments given and needs to take final exam at the proctor center. The student needs to earn a certificate by passing the exam. The student will be awarded the credits given in curriculum only by submission of the certificate. In case if student does not pass subjects registered through SWAYAM/NPTEL, the same or alternative equivalent subject may be registered again through SWAYAM/NPTEL in the next semester with the recommendation of HOD and shall be pass.

h) Major Project (Project - Project work, seminar and internship in industry):

In the final semester, the student should mandatorily register and undergo internship and in parallel he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report. A student shall also be permitted to submit project report on the work carried out during the internship. The project report shall be evaluated with an external examiner.

Evaluation: The total marks for project work 200 marks and distribution shall be 60 marks for internal and 140 marks for external evaluation. The supervisor assesses the student for 30 marks (Report: 15 marks, Seminar: 15 marks). At the end of the semester, all projects shall be showcased at the department for the benefit of all students and staff and the same is to be evaluated by the departmental Project Review Committee consisting of supervisor, a senior faculty and HOD for 30 marks. The external evaluation of Project Work is a Viva-Voce Examination conducted in

the presence of internal examiner and external examiner and is evaluated for 140 marks.

8 Results Declaration:

- Before results declaration, an academic council meeting shall be conducted and results shall be placed before the academic council for approval.
- ii. With the approval of academic council, the results shall be submitted to the University to get the Approval from Honorable Vice-Chancellor.
- iii. The University may normalize the result, if required, before declaration of the result (Guidelines for normalization will be provided separately)
- iv. A copy of approved results in a CD shall be submitted to the University Examination Center.
- **9. Academic Audit:** Academic audit in each semester will be conducted as per norms.
- 10. Recounting or Re-evaluation of Marks in theEnd Semester Examination: A student can request

- for recounting of revaluation of his/her answer book on payment of a prescribed fee as per norms.
- **11. Supplementary Examinations:** A student who has failed to secure the required credits can appear for a supplementary examination, as per the schedule announced by the University.
- **12. Malpractices in Examinations:** Disciplinary action shall be taken in case of malpractices during Mid/End examinations as per the rules framed by the University.
- **13. Promotion Rules:** The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in <u>item no.5 for</u> promotion to higher classes
 - a) A student shall be promoted from first year to second year if he fulfills the minimum attendance requirement as per University norm.
 - b) A student will be promoted from II year to III year if he fulfills the academic requirement of 40% of credits up to either II year I-Semester or II year II-Semester from all the examinations, whether or not the candidate takes the examinations and

- secures prescribed minimum attendance in II year II semester.
- c) A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to either III year I semester or III year II semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

14. Course Pattern

- a) The entire course of study is for four academic years; all years are on semester pattern.
- b) A student eligible to appear for the end semester examination in a subject, but absent from it or has failed in the end semester examination, may write the exam in that subject when conducted next.
- c) When a student is detained for lack of credits / shortage of attendance, he may be re-admitted into the same semester/year in which he has been detained. However, the academic regulations under which he was first admitted shall continue to be applicable to him.

15. Earning of Credit:

A student shall be considered to have completed a course successfully and earned the credits if he/she secures an acceptable letter grade in the range A+ to E as given below. Letter grade 'F' in any course implies failure of the student in that course and no credits earned. Absent is also treated as no credits earned. For project same % percentages will be followed for grading.

Marks Range	Marks range	Level Letter Grade		Grade
Max:100	Max:50	Bever	Letter Grade	point
≥ 90	≥ 45	Outstanding	A+	10
≥80 to <89	≥40 to <44	Excellent	A	9
≥70 to <79	≥35 to <39	Very Good	В	8
≥60 to <69	≥30 to <34	Good	С	7
≥50 to <59	≥25 to <29	Fair	D	6
≥40 to <49	≥20 to <24	Satisfactory	Е	5
<40	<20	Fail	F	0
_		Absent	AB	0

16. Award of Class:

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	CGPA to be secured	Remarks
First Class	\geq 7.75 (Without any	From the
with	supplementary	CGPA
Distinction	appearance)	secured
First Class	≥ 6.75	from
Second Class	\geq 5.75 to $<$ 6.75	160 Credits
Pass Class	\geq 5.00 to $<$ 5.75	

17. Minimum Instruction Days:

The minimum instruction days for each semester shall be 90 working days. There shall be no branch transfers after the completion of the admission process. There shall be no transfer from one college/stream to another within the Constituent Colleges and Units of Jawaharlal Nehru Technological University Kakinada.

18. Withholding of Results:

If the student is involved in indiscipline/malpractices/court cases, the result of the student will be withheld.

19. Transitory Regulations

 a) Discontinued or detained candidates are eligible for re-admission as and when next offered.

- b) The re-admitted candidate will be governed by the rules & regulations under which the candidate has been admitted.
- c) In case of transferred students from other Universities, credits shall be transferred to JNTUK as per the academic regulations and course structure of JNTUK.
- d) The students seeking transfer to colleges affiliated to JNTUK from various other Universities / Institutions have to obtain the credits of any equivalent subjects as prescribed by JNTUK. In addition, the transferred candidates have to pass the failed subjects at the earlier Institute with already obtained internal/sessional marks to be conducted by JNTUK.

20. Gap - Year:

Gap Year concept of Student Entrepreneur in Residence shall be introduced and outstanding students who wish to pursue entrepreneurship are allowed to take a break of one year at any time after I/II/III year to pursue entrepreneurship full time. This period shall be counted for the maximum time for graduation. An evaluation

committee at university level shall be constituted to evaluate the proposal submitted by the student and the committee shall decide on permitting the student for availing the Gap Year.

21. General:

- a) Wherever the words "he", "him", "his", occur in the regulations, they include "she", "her", "hers".
- b) The academic regulation should be read as a whole for the purpose of any interpretation.
- c) In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.
- d) The University may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the University.

ACADEMIC REGULATIONS (SITE18M) FOR

B. Tech

(LATERAL ENTRY SCHEME)

Applicable for the students admitted into II year B. Tech. from the Academic Year 2021-22 onwards

1. Award of B. Tech. Degree

A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:

- a) A student shall be declared eligible for the award of the B. Tech Degree, if he pursues a course of study in not less than three academic years and not more than six academic years. After six academic years from the year of their admission, he/she shall forfeit their seat in B. Tech course and their admission stands cancelled.
- b) The candidate shall register for 122 credits and secure all the 122 credits.
- 2. The attendance regulations of B. Tech. (Regular) shall be applicable to B. Tech (lateral entry)

3. **Promotion Rules:** A student shall be promoted from second year to third year if he fulfills the minimum attendance requirement.

A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to either III year I semester or III year II semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

4. Award of Class

After a student has satisfied the requirement prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	CGPA to be secured	Remarks
First Class with Distinction	≥ 7.75 (Without any supplementary appearance)	From the CGPA secured from 121
First Class Second Class	≥ 6.75 $\geq 5.75 \text{ to } < 6.75$	Credits from II

Pass Class	\geq 5.00 to $<$ 5.75	Year to IV

The Grades secured, Grade points and Credits obtained will be shown separately in the memorandum of marks.

 All the other regulations as applicable to B. Tech. 4year degree course (Regular) will hold good for B. Tech. (Lateral Entry Scheme)

COMMUNITY SERVICE PROJECT

Introduction

- Community Service Project is an experiential learning strategy that integrates meaningful community service with instruction, participation, learning and community development
- Community Service Project involves students in community development and service activities and applies the experience to personal and academic development.
- 3. Community Service Project is meant to link the community with the college for mutual benefit. The community will be benefited with the focused contribution of the college students for the village/local development. The college finds an

opportunity to develop social sensibility and responsibility among students and also emerge as a socially responsible institution.

Objective

Community Service Project should be an integral part of the curriculum, as an alternative to the 2 months of Summer Internships / Apprenticeships / On the Job Training, whenever there is an exigency when students cannot pursue their summer internships. The specific objectives are;

- 1. To sensitize the students to the living conditions of the people who are around them,
- 2. To help students to realize the stark realities of the society.
- To bring about an attitudinal change in the students and help them to develop societal consciousness, sensibility, responsibility and accountability
- 4. To make students aware of their inner strength and help them to find new /out of box solutions to the social problems.

- To make students socially responsible citizens who are sensitive to the needs of the disadvantaged sections.
- 6. To help students to initiate developmental activities in the community in coordination with public and government authorities.
- 7. To develop a holistic life perspective among the students by making them study culture, traditions, habits, lifestyles, resource utilization, wastages and its management, social problems, public administration system and the roles and responsibilities of different persons across different social systems.

Implementation of Community Service Project

- Every student should put in a minimum of 180 hours for the Community Service Project during the summer vacation
- 2. Each class/section should be assigned with a mentor.
- 3. Specific Departments could concentrate on their major areas of concern. For example, Dept. of

- Computer Science can take up activities related to Computer Literacy to different sections of people like - youth, women, house-wives, etc
- 4. A log book has to be maintained by each of the student, where the activities undertaken/involved to be recorded. The log book has to be countersigned by the concerned mentor/faculty in charge.
- 5. Evaluation to be done based on the active participation of the student and grade could be awarded by the mentor/faculty member.
- 6. The final evaluation to be reflected in the grade memo of the student.
- 7. The Community Service Project should be different from the regular programs of NSS/NCC/Green Corps/Red Ribbon Club, etc.
- Minor project report should be submitted by each student. An internal Viva shall also be conducted by a committee constituted by the principal of the college.

 Award of marks shall be made as per the guidelines of Internship/apprentice/ on the job training

Procedure

- A group of students or even a single student could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay, so as to enable them to commute from their residence and return back by evening or so.
- 2. The Community Service Project is a twofold one
 - a) First, the student/s could conduct a survey of the habitation, if necessary, in terms of their own domain or subject area. Or it can even be a general survey, incorporating all the different areas. A common survey format could be designed. This should not be viewed as a duplication of work by the Village or Ward volunteers, rather, it could be another primary source of data.

- Secondly, the student/s could take up a social activity, concerning their domain or subject area. The different areas, could be like
 - Agriculture
 - Health
 - Marketing and Cooperation
 - Animal Husbandry
 - Horticulture
 - Fisheries
 - Sericulture
 - Revenue and Survey
 - Natural Disaster Management
 - Irrigation
 - Law & Order
 - Excise and Prohibition
 - Mines and Geology
 - Energy
 - Internet
 - Free Electricity
 - Drinking Water

EXPECTED OUTCOMES BENEFITS OF COMMUNITY SERVICE PROJECT TO STUDENTS

Learning Outcomes

- 1. Positive impact on students' academic learning.
- 2. Improves students' ability to apply what they have learned in "the real world".
- 3. Positive impact on academic outcomes such as demonstrated complexity of understanding, problem analysis, problem-solving, critical thinking, and cognitive development.
- 4. Improved ability to understand complexity and ambiguity.

Personal Outcomes

- 1. Greater sense of personal efficacy, personal identity, spiritual growth, and moral development.
- 2. Greater interpersonal development, particularly the ability to work well with others, and build leadership and communication skills

Social Outcomes

- 1. Reduced stereotypes and greater inter-cultural understanding
- 2. Improved social responsibility and citizenship skills

3. Greater involvement in community service after graduation

Career Development

- 1. Connections with professionals and community members for learning and career opportunities
- Greater academic learning, leadership skills, and personal efficacy can lead to greater opportunity

Relationship with the Institution

- 1. Stronger relationships with faculty
- 2. Greater satisfaction with college
- 3. Improved graduation rates

BENEFITS OF COMMUNITY SERVICE PROJECT TO FACULTY MEMBERS

- 1. Satisfaction with the quality of student learning
- 2. New avenues for research and publication via new relationships between faculty and community
- 3. Providing networking opportunities with engaged faculty in other disciplines or institutions
- 4. A stronger commitment to one's research

BENEFITS OF COMMUNITY SERVICE PROJECT TO COLLEGES AND UNIVERSITIES

- 1. Improved institutional commitment
- 2. Improved student retention
- 3. Enhanced community relations

BENEFITS OF COMMUNITY SERVICE PROJECT TO COMMUNITY

- 1. Satisfaction with student participation
- Valuable human resources needed to achieve community goals
- 3. New energy, enthusiasm and perspectives applied to community work
- 4. Enhanced community-university relations.

SUGGESTIVE LIST OF PROGRAMS UNDER COMMUNITY SERVICE PROJECT

The following the recommended list of projects for engineering students. The lists are not exhaustive and open for additions, deletions and modifications. Colleges are expected to focus on specific local issues for this kind of projects. The students are expected to carry out these projects with involvement, commitment, responsibility and accountability. The mentors of a group of students should take the responsibility of motivating, facilitating, and guiding the students. They have to interact with local

leadership and people and appraise the objectives and benefits of this kind of projects. The project reports shall be placed in the college website for reference. Systematic, Factual, methodical and honest reporting shall be ensured.

For Engineering Students

- 1. Water facilities and drinking water availability
- 2. Health and hygiene
- 3. Stress levels and coping mechanisms
- 4. Health intervention programs
- 5. Horticulture
- 6. Herbal plants
- 7. Botanical survey
- 8. Zoological survey
- 9. Marine products
- 10. Aqua culture
- 11. Inland fisheries
- 12. Animals and species
- 13. Nutrition
- 14. Traditional health care methods
- 15. Food habits
- 16. Air pollution
- 17. Water pollution

- 18. Plantation
- 19. Soil protection
- 20. Renewable energy
- 21. Plant diseases
- 22. Yoga awareness and practice
- 23. Health care awareness programs and their impact
- 24. Use of chemicals on fruits and vegetables
- 25. Organic farming
- 26. Crop rotation
- 27. Floury culture
- 28. Access to safe drinking water
- 29. Geographical survey
- 30. Geological survey
- 31. Sericulture
- 32. Study of species
- 33. Food adulteration
- 34. Incidence of Diabetes and other chronic diseases
- 35. Human genetics
- 36. Blood groups and blood levels
- 37. Internet Usage in Villages
- 38. Android Phone usage by different people
- 39. Utilization of free electricity to farmers and

related issues

40. Gender ration in schooling level- observation.

Complimenting the community service project, the students may be involved to take up some awareness campaigns on social issues/special groups.

The suggested lists of programs are;

Programs for School Children:

- 1. Reading Skill Program (Reading Competition)
- 2. Preparation of Study Materials for the next class.
- 3. Personality / Leadership Development
- 4. Career Guidance for X class students
- Screening Documentary and other educational films
- Awareness Program on Good Touch and Bad Touch (Sexual abuse)
- 7. Awareness Program on Socially relevant themes.

Programs for Women Empowerment

- 1. Government Guidelines and Policy Guidelines
- 2. Women's' Rights
- 3. Domestic Violence
- 4. Prevention and Control of Cancer
- 5. Promotion of Social Entrepreneurship

General Camps

- 1. General Medical camps
- 2. Eye Camps
- 3. Dental Camps
- 4. Importance of protected drinking water
- 5. ODF awareness camp
- 6. Swatch Bharat
- 7. AIDS awareness camp
- 8. Anti Plastic Awareness
- 9. Programs on Environment
- 10. Health and Hygiene
- 11. Hand wash programs
- 12. Commemoration and Celebration of important days

Programs for Youth Empowerment

- 1. Leadership
- 2. Anti-alcoholism and Drug addiction
- 3. Anti-tobacco
- 4. Awareness on Competitive Examinations
- 5. Personality Development

Common Programs

1. Awareness on RTI

- 2. Health intervention programs
- 3. Yoga
- 4. Tree plantation
- Programs in consonance with the Govt.
 Departments like
 - i. Agriculture
 - ii. Health
 - iii. Marketing and Cooperation
 - iv. Animal Husbandry
 - v. Horticulture
 - vi. Fisheries
 - vii. Sericulture
 - viii. Revenue and Survey
 - ix. Natural Disaster Management
 - x. Irrigation
 - xi. Law & Order
 - xii. Excise and Prohibition
 - xiii. Mines and Geology
 - xiv. Energy

Role of Students:

- 1. Students may not have the expertise to conduct all the programs on their own. The students then can play a facilitator role.
- 2. For conducting special camps like Health related, they will be coordinating with the Government agencies.
- 3. As and when required the College faculty themselves act as Resource Persons.
- 4. Students can work in close association with Non-Governmental Organizations like Lions Club, Rotary Club, etc or with any NGO actively working in that habitation.
- And also, with the Governmental Departments. If the program is rolled out, the District Administration could be roped in for the successful deployment of the program.
- An in-house training and induction program could be arranged for the faculty and participating students, to expose them to the methodology of Service Learning.

Timeline for the Community Service Project Activity

Duration: 8 weeks

1. Preliminary Survey (One Week)

- a) A preliminary survey including the socioeconomic conditions of the allotted habitation to be conducted.
- b) A survey form based on the type of habitation to be prepared before visiting the habitation with the help of social sciences faculty. (However, a template could be designed for different habitations, rural/urban.
- c) The Governmental agencies, like revenue administration, corporation and municipal authorities and village secretariats could be aligned for the survey.

2. Community Awareness Campaigns (Two Weeks)

Based on the survey and the specific requirements of the habitation, different awareness campaigns and programs to be conducted, spread over two weeks of time. The list of activities suggested could be taken into consideration.

3. Community Immersion Program (Four Weeks)

Along with the Community Awareness Programs, the student batch can also work with any one of the below

listed governmental agencies and work in tandem with them. This community involvement program will involve the students in exposing themselves to the experiential learning about the community and its dynamics. Programs could be in consonance with the Govt. Departments.

4. Community Exit Report (One Week)

During the last week of the Community Service Project, a detailed report of the outcome of the 8 weeks works to be drafted and a copy shall be submitted to the local administration. This report will be a basis for the next batch of students visiting that particular habitation. The same report submitted to the teacher-mentor will be evaluated by the mentor and suitable marks are awarded for onward submission to the University.

Throughout the Community Service Project, a daily log-book need to be maintained by the students batch, which should be countersigned by the governmental agency representative and the teacher-mentor, who is required to periodically visit the students and guide them.

Course Numbering Scheme

The Course number code consists of 11 alphabets. A typical course number code is illustrated in the following Figure-1.

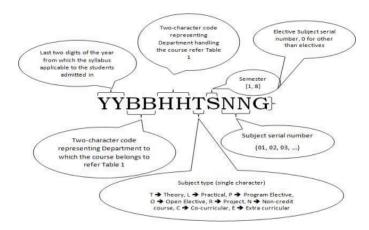


Figure 1: Course Numbering Scheme

The department codes are in given in following table

1.

Table 1: Department Codes

Department	Two-character code
Artificial Intelligence and Machine Learning	AM
Civil Engineering	CE
Electrical & Electronics Engineering	EE
Mechanical Engineering	ME
Electronics & Communication Engineering	EC
Electronics & Communication Technology	ET
Computer Science and Engineering	CS

Computer Science and Technology	CT
Information Technology	IT
Management Science	MS
Mathematics	MA
Physics	PH
Chemistry	СН
English	EG
Biology	BI
Common to All Branches	CM

Example: STLD in 3rd semester for ECE with S.

No 2

Course Code: 18ECECT3020

Table 2: Comparison of Number of credits given by
AICTE and Approved credits

			No. of Credits								
	ry	ECE/		EEE		CSE/I		ME		CE	
S. No.	Category	AICTE	Approve	AICTE	Approve	AICTE	Approve	AICTE	Approve	AICTE	Approve
1	Huma nities and	12	11	12	11	12	11	12	11	12	08

	Social										
	Scienc										
	es										
	Basic										
2	Scienc		22	26	25	24	26	25	26	26	26
2	e	25	23	26	25	24	26	25	26	26	26
	course										
	S										
	Engin										
	eering						29.				24
3	Scienc	24	23	20	20	29	5	24	23	29	.5
	e course						3				.3
	S Profes										
	sional						40				5.6
4	Core	48	56	53	62	49	48.	48	55	47	56
	course						5				.5
	S										
	Profes										
	sional										
5	Electi	4.0	20	10	1.5	10	10	10	18	22	21
3	ve	18	20	18	15	18	18	18	18	23	21
	Cours										
	es										
	Open										
6	electiv	18	12	18	12	12	12	18	12	11	9
	e										

	course										
7	Projec t work , Semin ar and Intern ship	15	15	11	15	15	15	15	15	12	15
8	Mand atory Cours es	-	-	-	-	-	-	-	-	1	1
Tot	tal edits	16 0	16 0	16 0	16 0	160	160	160	160	160	16 0

DISCIPLINARY ACTION FOR MALPRACTICES /IMPROPER CONDUCT IN EXAMS

S. No.	Nature of Malpractices/Improper conduct	Punishment
	If the candidate:	
	Possesses or keeps	Expulsion from
1.	accessible in	the examination
(a)	examination hall, any	hall and
	paper, note book,	cancellation of

programmable the performance calculators, Cell phones, that subject in pager, palm computers only. or any other form of material concerned with or related to the subject ofexamination the (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject ofthe examination) Expulsion Gives assistance from or guidance or receives it the examination from any other candidate hall and orally or by any other cancellation ofbody language methods the performance 1. in that communicates subject or only of all the (b) through cell phones with any candidate or persons candidates in or outside the exam involved. In case hall in respect of any of an outsider, he will be handed matter. over to the police

		and a case is
		registered against him.
		•
	Has copied in the	Expulsion from
	examination hall from	the examination
	any paper, book,	hall and
	programmable	cancellation of
	calculators, palm	the performance
	computers or any other	in that subject
	form of material relevant	and all other
	to the subject of the	subjects the
	examination (theory or	candidate has
	practical) in which the	already appeared
	candidate is appearing.	including
		practical
2.		examinations and
		project work and
		shall not be
		permitted to
		appear for the
		remaining
		examinations of
		the subjects of
		that
		Semester/year.
		The Hall Ticket
		of the candidate
		is to be cancelled

		and sent to the
		University.
	Impersonates any other	The candidate
	candidate in connection	who has
	with the examination.	impersonated
		shall be expelled
		from
		examination hall.
		The candidate is
		also debarred and
		forfeits the seat.
		The performance
		of the original
		candidate, who
3.		has been
		impersonated,
		shall be cancelled
		in all the subjects
		of the
		examination
		(including
		practicals and
		project work)
		already appeared
		and shall not be
		allowed to appear
		for examinations
		of the remaining

		subjects of that
		semester/year.
		The candidate is
		also debarred for
		two consecutive
		semesters from
		class work and
		all University
		examinations.
		The continuation
		of the course by
		the candidate is
		subject to the
		academic
		regulations in
		connection with
		forfeiture of seat.
		If the imposter is
		an outsider, he
		will be handed
		over to the police
		and a case is
		registered against
		him.
4.	Smuggles in the Answer	Expulsion from
	book or additional sheet	the examination
	or takes out or arranges	hall and
	to send out the question	cancellation of

paper during the examination or answer book or additional sheet, during or after the examination.

performance that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject the to

		academic
		regulations in
		connection with
		forfeiture of seat.
	Uses objectionable,	Cancellation of
	abusive or offensive	the performance
	language in the answer	in that subject.
5.	paper or in letters to the	
	examiners or writes to	
	the examiner requesting	
	him to award pass marks.	
	Refuses to obey the	In case of
	orders of the Chief	students of the
	Superintendent/Assistant	college, they
	– Superintendent / any	shall be expelled
	officer on duty or	from
	misbehaves or creates	examination
	disturbance of any kind	halls and
	in and around the	cancellation of
6.	examination hall or	their
	organizes a walk out or	performance in
	instigates others to walk	that subject and
	out, or threatens the	all other subjects
	officer-in charge or any	the candidate(s)
	person on duty in or	has (have)
	outside the examination	already appeared
	hall of any injury to his	and shall not be
	person or to any of his	permitted to

whether relations by words, either spoken or written or by signs or by visible representation, assaults the officer-incharge, or any person on duty in or outside the examination hall or any ofhis relations. or indulges in any other act misconduct or mischief which result in damage to or destruction property of in the examination hall or any the College part campus or engages in any other act which in the opinion of the officer on duty amounts to use ofunfair means ormisconduct or has the tendency to disrupt the orderly conduct of the examination.

appear for the remaining examinations of the subjects of that semester/year.

The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.

7. Leaves the exam hall taking away answer script or intentionally

Expulsion from the examination hall and tears of the script or any part thereof inside or outside the examination hall. cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and University all examinations. The continuation of the course by the candidate is

		subject to the
		academic
		regulations in
		connection with
		forfeiture of seat.
	Possess any lethal	Expulsion from
	weapon or firearm in the	the examination
	examination hall.	hall and
		cancellation of
		the performance
		in that subject
		and all other
		subjects the
		candidate has
		already appeared
8.		including
0.		practical
		examinations and
		project work and
		shall not be
		permitted for the
		remaining
		examinations of
		the subjects of
		that
		semester/year.
		The candidate is

		also debarred and
		forfeits the seat.
	If student of the college,	Student of the
	who is not a candidate	colleges
	for the particular	expulsion from
	examination or any	the examination
	person not connected	hall and
	with the college indulges	cancellation of
	in any malpractice or	the performance
	improper conduct	in that subject
	mentioned in clause 6 to	and all other
	8.	subjects the
		candidate has
		already appeared
9.		including
		practical
		examinations and
		project work and
		shall not be
		permitted for the
		remaining
		examinations of
		the subjects of
		that
		semester/year.
		The candidate is
		also debarred and
		forfeits the seat.

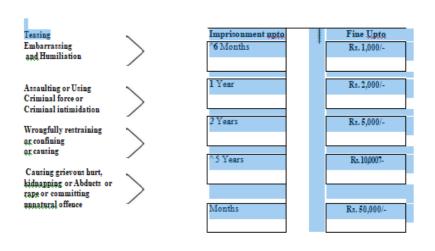
		Person(s) who do
		` '
		not belong to the
		College will be
		handed over to
		police and, a
		police case will
		be registered
		against them.
	Comes in a drunken	Expulsion from
	condition to the	the examination
	examination hall.	hall and
		cancellation of
		the performance
		in that subject
		and all other
10.		subjects the
		candidate has
		already appeared
		including
		practical
		examinations and
		project work and
		shall not be
		permitted for the
		remaining
		examinations of
		the subjects of

		.1
		that
		semester/year.
	Copying detected on the	Cancellation of
	basis of internal	the performance
	evidence, such as, during	in that subject
	valuation or during	and all other
	special scrutiny.	subjects the
		candidate has
11.		appeared
11.		including
		practical
		examinations and
		project work of
		that
		semester/year
		examinations.
12.	If any malpractice is	
	detected which is not	
	covered in the above	
	clauses 1 to 11 shall be	
	reported to the	
	University for further	
	action to award suitable	
	punishment.	

MALPRACTICES

The Principal shall refer the cases of malpractices

in Continuous Evaluation and Semester-End Examinations, to Malpractice Enquiry Committee, constituted by him/her for the purpose. Such committee shall follow the approved scales of punishment. The Principal shall take necessary action, against the erring students based on the recommendations of the committee.


• Any action on the part of student at an examination trying to get undue advantage in the performance or trying to help another, or derive the same through unfair means is punishable according to the provisions contained hereunder. The involvement of the Staff, who are in charge of conducting examinations, valuing examination papers and preparing/keeping records of documents relating to the examinations in such acts (inclusive of providing incorrect or misleading information) that infringe upon the course of natural justice to one and all concerned

at the examination shall be viewed seriously and recommended for award of appropriate punishment after thorough enquiry.

Ragging

Prohibition of ragging in educational institutions Act 26 of 1997 Salient Features

- Ragging within or outside any educational institution is prohibited.
- Ragging means doing an act which causes or is likely to cause Insult or Annoyance of Fear or Apprehension or Threat or Intimidation or outrage of modesty or Injury to a student.

Causing death or abetting suicide

In Case of Emergency call Toll Free Number:

1800-425-1288

COURSE STRUCTURE AND DETAILED SYLLABUS

for

B.Tech.-

SITE18M

Regulations

With Effective from the Academic Year 2020-2021

Program Outcomes for Engineering Graduates:

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems:
 Use research-based knowledge and research
 methods including design of experiments,
 analysis and interpretation of data, and synthesis
 of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and

- modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate

knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

I B. Tech I Semester Course structure for the Academic Year 2020-2021

Common for ME/CE/EEE/CST

S.No.	Subject Code	Subject title	L	Т	P	C		
1	18CMEGT1010	Technical English	3	0	0	3		
2	18CMMAT1020	Engineering Mathematics-I	3	1	0	4		
3	18CMCHT1030	Engineering Chemistry	3	1	0	4		
4	18CMEET1040	Basic Electrical Engineering	3	1	0	4		
5	18CMEGL1050,	English Communication skills lab	0	0	2	1		
6	18CMCHL1060	Engineering Chemistry Lab	0	0	3	1.5		
7	18CMEEL1070	Basic Electrical Engineering Lab	0	0	3	1.5		
Total Credits								
	Constitution of India, professional ethics & human rights (Non -Credit course)							

I B. Tech II Semester Course structure for the Academic Year 2020-2021 Common for ME/CE/EEE/CST

S.No.	Subject Code	Subject title	L	Т	P	С		
1	18CMMAT2010	Engineering Mathematics II	3	1	0	4		
2	18CTPHT2020	Engineering Physics	3	1	0	4		
3	18CMCTT2030	Programming for problem solving	3	0	0	3		
4	18CMMEL2040	Engineering Graphics	1	0	4	3		
5	18CTPHL2050	English Physics lab	0	0	3	1.5		
6	18CMCTL2060	Programming for problem solving lab	0	0	4	2		
7	18CMMEL2070	Work Shop/Manufacturing Practice	0	0	3	1.5		
	Total Credits							
Envi	ronmental Scienc	e (Non -Credit course)						

	TECHNICAL ENGI SEMESTER - I	LISH						
Subject Code	18CMEGT2010	Internal Marks	30					
Number of Lecture Hours/ Week	03	External Marks	70					
Total Number of Lecture Hours	50	Exams Hours	03					
	Credits -03							
Technical English & C Technical English Voc Writing Skills Common Errors in Wr Nature and Style of Se Writing Technical Rep Providing an inspiring renowned technocrat.	cabulary iting ensible Technical Writi ports and Letters	ng	ı					
Unit I								
Principles of Scientific Principles of Scientific Compact substitutes for expressions-Avoid had incorrect use of words. The role of roots in confusing words and e Non-detailed text-Karr	ic vocabulary: short a or wordy phrases- red ekneyed and stilted phrases word building, prefit expressions.	lundant words and ases, verbosity and exes and suffixes,	10 hours					
Unit II								
Writing Skills Distinguishing between academic and personal stylesof writing								
• Use of clauses in technical phrases and sentences								
• Techniques of Sentence and paragraph writing Measuring the clarity of a text through Fog Index or Clarity								

Non-detailed text- Karmayogi: 5-8 chapters, Page No54-

Index

100

Unit III	
Common Errors in Writing	
Subject-verb agreement and concord of nouns,	
pronouns and possessive adjectives	
Common errors in the use of articles, prepositions,	10
adjectives and adverbs	hours
Punctuation	
Technical Guidelines for Communication	
Avoiding the pitfalls	
Non-detailed text-Karmayogi: 9-12 chapters, Page No101- 151	
Unit IV	ı
Nature and Style of Sensible Technical Writing	
Academic Writing Process	
Describing, processes and products	10
Defining, Classifying	hours
Effective use of charts, graphs, and tables	
Non-detailed text- Karmayogi: 13-16 chapters, Page No	
152-203	
Unit V	
Report writing and Letter writing	
Writing 1. Technical Reports	
Précis writing	10
Letter Writing	Hours
Essay writing	
Non-detailed text- Karmayogi: 13-16 chapters, Page No	
204-250	
Course Outcomes	_

On Completion of the course student will acquire

- 1. Ability to understand Scientific vocabulary and use them confidently Familiarity with the basic principles of writing clear sentences and paragraphs
- 3. Ability to write error free simple technical passages
- 4. Knowledge of writing different writing styles

Confidence to write letters and technical reports clearly and coherently

Get inspired by achievements and values upheld by a renowned technocrat.

Question Paper

Pattern

Section -A

5 questions carrying 14 marks each (one compulsory questionfrom non-detailed text)

Each question will have two or three sub questions covering all the units

Text Books

Effective Technical Communication by Barun K Mitra,Oxford
 University Publication

Non-detailed Text

1. Karmayogi: A Biography of E Sreedharan by M S Ashokan

Reference Books

Communication Skills by Sanjay Kumar & PushpaLatha, OUP Study Writing by Liz Hamp-Lyons and Ben Heasly, Cambridge University Press.

Remedial English Grammar by F T Wood, Macmillian 2007 Practical English Usage by Michael SwanOxford UniversityPress English Collocations in Use by Michael McCarthy & FelicityO'Dell Effective Technical Communication by Arsahf Rizvi, Essential English Grammar by Raymond Murphy, CUP, 2017

Course outcomes to Program outcomes mapping:

\mathbf{C}	P	P	P	P	P	P	P	P	P		PO		PS	PS	PS
O	O	О	O	O	O	О	О	О	О	10	11	12	О	О	О
	1	2	3	4	5	6	7	8	9				1	2	3
1	-	-	1	•	1			-		2	-	•	•	•	•
2	-	-	1	•	1			-		2	-	•	•	•	•
3	-	-	1	•	•	•		-	•	2	•	•	1	1	•
4	-	-	1	1	1	1	1	-	•	2	-	•	•	•	•
5	-	-	-	-	-	-	-	-	-	2	•	-	-	•	-
6	-	-	-	•	-	-	-	-	-	2	-	•	•	•	•

ENGINEERING MATHEMATICS-I SEMESTER - I								
Subject Code	18CMMAT1010	Internal Marks	30					
Number of Lecture Hours/Week	3+ 1(T)	External Marks	70					
Total Number of Lecture Hours	50	Exam Hours	03					

Credits - 04

Course Objectives:

To enable the students to apply the knowledge of Mathematics in various engineering fields by making them to learn the following:

To solve first order differential equations.

To solve linear differential equations with constantcoefficients.

To find the extrema of a function.

To solve partial differential equations

To evaluate multiple integrals

To verify vector integral theorems

Unit -1	
First order and first degree Ordinary Differential Equations Exact, reducible to exact, linear and Bernoulli's differential equations. Orthogonal trajectories in Cartesian and polar form. Simple problems on Newton's law of cooling. Law of natural growth and decay.	Hours – 10
Unit -2	
Linear differential equations with constant coefficients: Solutions of second and higher order differential equations - inverse differential operator methods, Method of variation of parameters. Application: LCR Circuits	Hours –
Unit – 3	

differentiation of tional dependence. or function of two	derivatives – Definition and Euler's theorem proof), total derivatives, partial differentiation of the functions. Jacobian Functional dependence, and Maclaurin's theorems for function of two statement only). Maxima and minima- Lagranges of undetermined multipliers Hours – 10
	4
by elimination of s solutions of first onlinear (standard houses: mogeneous partial coefficients –	ther Partial differential equations: on of Partial differential equations by elimination of constants and arbitrary functions solutions of first near (Lagrange) equation and nonlinear (standard nations order Partial differential equations: s of Homogeneous and Non-Homogeneous partial itial equations with constant coefficients — ation of partial differential equations.
changing the order co-ordinates. Beta House - Curl - Line ace and volume plane, Stokes and	and triple integrals: Evaluation of double and triple . Evaluation of double integrals by changing the order ation and by changing into polar co-ordinates. Beta ma functions and their properties Calculus – Gradient – Divergence - Curl - Line definition and problems, surface and volume definition, Green's theorem in a plane, Stokes and vergence theorems (without proof) and problems.
	butcomes: bletion of this course, students are able to st order differential equations. blear differential equations with constant coefficients. extrema of a function. rtial differential equations multiple integrals ector integral theorems

Question paper pattern:

Section A:

- 1. This Section will have 10 questions.
- 2. Each full question carry 14 marks.

Each full question will have sub question covering all topics under a unit. The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. B.S. Grewal, "Higher Engineering Mathematics", Khanna publishers, 44th edition, 2016.
- **2.** Erwin Kreyszig, "Advanced Engineering Mathematics, Wiley, 9th edition, 2013.

Reference Books:

- 1. B.V. Ramana, "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006
- 2. N.P.Bali and Manish Goyal, "A text book of Engineering mathematics", Laxmi

publications, latest edition.

3. H.K. Dass and Er. RajnishVerma, "Higher Engineering Mathematics", S.Chand publishing, 1st edition, 2011.

Course outcomes to program outcomes mapping:

	P	P	P	P	P	P	P	P	P			PO	PS	PS	PS
CO	О	О	O	О	O	О	O	О	O	10	11	12	O	О	O
O	1	2	3	4	5	6	7	8	9				1	2	3
1	2	3	-	-	-	-	-	-	-	-	-	-	-	-	-
2	2	3	1						-		-		-	-	-
3	2	3	1						-		-	-	-	-	-
4	2	3	-	-	-	-	-	-	-	•	-	-	-	-	-
5	2	3	-	1	1	1	1	1	-	-	-	-	-	-	-
6	2	3	-	1	1	1	1	1	-	1	-	-	-	-	-
Co	2	3	-	•	•	•		•	-	-	-	-	-	-	-
u															
rse															

ENGINEERING CHEMISTRY									
	SEMESTER - I								
Subject Code 18CMCHT2030 Internal Marks									
Number of Lecture	3(L) + 1(T)	External Marks	70						
Hours/Week									
Total Number of	50	Exam Hours	03						
Lecture Hours									

Credits - 04

COURSE OBJECTIVES:

The objectives of this course, help the students to

Rationalize periodic properties like ionization potential,

electronegativity and oxidation states.

Apply the concepts of electrochemistry.

Analyze bulk properties and processes using thermodynamic considerations.

List major chemical reactions that are used in the synthesisof molecules. Understand the concepts of atomic and molecular orbitals.

Know various spectroscopic techniques.

Unit -1	
PERIODIC PROPERTIES Effective nuclear charge of fluorine and magnesium, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionizationenergies, electron affinity and electro negativity, oxidation states, coordination numbers 2 & 3 and geometries, hard soft acids and bases.	Hours - 10
Unit -2	

USE OF FREE ENERGY IN CHEMICALEQUILIBRIA	
Thermodynamic functions: State and Path functions, First	
and second laws of thermodynamics, Gibbs Helmholtz	Hours
Equation, concept of entropy and enthalpy.	– 10
Electro chemistry: Introduction, electrode potential, standard	
electrodes - Hydrogen and Calomel electrodes,	
Nernst equation and applications.	
Water chemistry: Surface and subsurface water quality	
parameters - turbidity, pH, total dissolved salts, chloride	
content, break point chlorination.	
Corrosion: Wet chemical theory, control methods – proper	
designing, cathodic protection- Sacrificial anodic and	
impressed current cathodic protection.	
Unit – 3	
STEREOCHEMISTRY	
Principles of stereochemistry, representations of 3	
dimensional structures of organic compounds, geometrical	
and stereoisomers, configuration and symmetry, enantiomers.	Hours
ORGANIC REACTIONS AND SYNTHESIS OF ADRUG	- 10
MOLECULE	
Introduction to reactions involving Substitution – SN ¹ & SN ²	
with mechanism, Addition – Free radical, Elimination – E1	
& E2 with examples (mechanism is not involved), Synthesis	
of aspirin drug molecule.	
Unit – 4	
ATOMIC, MOLECULAR STRUCTURE AND	
ADVANCED MATERIALS	
Schrodinger equation. Particle in a box solution and their	
applications for conjugated molecules.	
Nanoparticles: Introduction, preparation methods – Sol- gel	Hours
method, Chemical reduction method - properties and	- 10
applications.	
Surface properties: Determination of surface tension and	
viscosity of liquids.	
Ceramics: Classification, examples and applications. Crystal	
field theory and the energy level diagrams fortransition	
metal ions.	
Unit – 5	
Omt - S	

SPECTROSCOPIC TECHNIQUES

Regions of electromagnetic spectrum - Principles of vibrational and rotational spectroscopy. Vibrational and rotational spectroscopy of diatomic molecules: Rigid diatomic molecules - selection rule - simple Harmonic Oscillator - diatomic vibrating rotator. Nuclear magnetic resonance - Principle and Instrumentation. Principles of chromatography - TLC & Paper.

Hours - 10

COURSE OUTCOMES:

On completion of the course student will be:

- 1. Able to rationalize periodic properties like ionization potential, electro negativity and oxidation states.
- 2. Able to know the nature and working of various electrodes.
- 3. Able to analyze bulk properties and processes using thermodynamic considerations.
- Able to synthesize organic molecules using different typesof chemical reactions.
- 5. Able to understand the concepts of atomic and molecular orbitals.
- Able to gain knowledge on spectroscopic techniques and the ranges of the electromagnetic spectrum used forexciting different molecular energy levels.

OUESTION PAPER PATTERN:

SECTION A:

This section will have 5 questions with internal choice.

Each full question carries 14 marks.

Each full question will have sub question covering alltopics under a unit.

TEXT BOOKS:

Stereochemistry of Carbon Compounds by Ernest Eliel;McGraw Hill Education.

Fundamentals of Molecular Spectroscopy, by C. N.Banwell.

Concise Inorganic Chemistry, J.D.Lee, 5th Edition; WileyIndia.

Engineering Chemistry – Fundamentals and applications by Shikha Agarwal; Cambridge University Press

Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Edition

http://bcs.whfreeman.com/vollhardtschore5e/default.asp

Engineering Chemistry by Jain & Jain; Dhanpat Rai Publishing Company

REFERENCE BOOKS:

Engineering Chemistry (NPTEL Web-book), by B. L. Tembe,

Kamaluddin and M. S.Krishnan.

Physical Chemistry, by P. W. Atkins.

Physical Chemistry, by Glasstone, S

Advanced inorganic chemistry by Wilkinson G and CottonFA

Course outcomes to Program outcomes mapping:

				٠.					TT	0.					
CO	PO	P	P	P	PS	PS	PS								
	1	2	3	4	5	6	7	8	9	O	О	О	O	О	O
	1	-		•		Ů	,	•	_	10	11	12	1	2	3
1	3	-	ı	ı	-	-	-	-	-	-	-	-	-	-	-
2	-	3	-	-	-	-	-	-	-	-	1	-	-	-	-
3	-	3	-	-	-	-	-	-	-	-	1	-	-	-	-
4	-	-	3	-	-	-	-	-	-	-	1	-	-	-	-
5	-	3	-	-	-	-	-	-	-	-	1	-	-	-	-
6	3	-	-	-	-	-	-	-	-	-	1	-	-	-	-
Co	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
u															
rse															

BASIC ELECTRICAL ENGINEERING SEMESTER - I												
Subject Code	18CMEET2040	Internal Marks	30									
Number of Lecture Hours/week	3(L)+1(T)	External Marks	70									
Total Number of Lecture Hours	50	Exam Hours	03									

Credits-04

Course Objectives:

This course will enable student to:

- 1. Describe the basics electrical circuit concepts and how to applythe various theorems for given electrical network
- 2. Describe the representation of sinusoidal waveform and also analysis of single phase ac circuit with various elements
- 3. Describe the principle and operation of ac and dc electrical machines
- 4. Describe the basic operation of different converters circuits
- 5. Describe the necessity of the batteries and importance of thebasic switch gear unit

•	T	-
	nıt	- 1

DC Circuits:	
Electrical circuit elements (R, L and C), voltage and current	
sources, Kirchhoff's current and voltage laws, analysis of	Hours-
simple circuits with dc excitation. Superposition, The venins	10
and Norton Theorems (Simple numerical problems). Time-	
domain analysis of first-order RL and RC circuits.	
Unit – 2	
AC Circuits:	
Representation of sinusoidal waveforms, peak and rms	
values, phasor representation, real power, reactive power,	
apparent power, power factor. Analysis of single-phase ac	Hours-
circuits consisting of R, L, C, RL, RC, RLC	10
combinations (series and parallel), resonance. Three-phase	
balanced circuits, voltage and current relations in star and	
delta connections.	
Unit – 3	

Transformers Magnetic materials, BH characteristics, ideal and practical transformer, equivalent circuit, losses in transformers, OC and SC tests, regulation and efficiency. Auto transformer and three-phase transformer connections.	Hours- 10
Unit – 4	
Electrical Machines: Ac machines- Generation of rotating magnetic fields, construction details and working of three phase induction motor, significance of torque — slip characteristics. Loss components and efficiency, starting and speed control of induction motor. Single phase induction motor. Construction and working of synchronous generators. DC machines- Construction, working, torque- speed characteristics and speed control of dc shunt motor.	Hours- 10
Unit – 5	
Power Converters and Electrical Installations DC – DC Buck and boost converters, duty ratio control, PWM techniques, single phase voltage source inverters. Classification of batteries and Low Voltage switch gear.	Hours- 10
Course outcomes: On completion of the course student will be Able to analyze DC circuits by using KCL, KVL and Networkth Able to analyze AC circuits Able to explain the operation and compute performance of transformer Able to explain the construction and working of rotatingelectric machines Able to describe DC-DC and DC-AC converters Able to explain about types of LV switch gear and types ofbatte	al

Question paper pattern:

Section A:

- 1. This section will have 10 questions.(Two questions from each unit)
 - 2. Each full question carries 14 marks.
- 3. Each full question will have sub question covering all topics under unit
- 4. The student will have to answer 5 full questions selecting onefull question from each

unit.

Test books.

- T1. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- T2.D.C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- T3.D.P. Kothari, I.J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- T4. J.P. Tewari, "Basic Electrical Engineering", New Age International Publishers, 2003.

References

- R1. M.D. Singh, "Power Electronics", 2nd edition.
- R2. "Battery Energy Storage for Smart Grid Applications", Eurobat 2013.
- R3. L.S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 1996.
- R4. V.D. Toro, "Electrical Engineering Fundamentals", PrenticeHall India, 1989.
- R5. R.M. Dell, D.A.J. Rand, "Understanding Batteries", 2001.R6.

Bhavesh Bhalja, R.P., Maheshwari, Nilesh G. Chothani,

"Protection and Switchgear", Oxford University Press, 5th impression, 2014.

Course Outcomes to Program Outcomes mapping

COs	P	P	P	P	P	P	P	P	P	PO	PO	PO	PS	PS	PS
/	О	O	O	0	О	O	O	O	O	10	11	12	О	O	О
PO	1	2	3	4	5	6	7	8	9				1	2	3
S															
1	3	3	3	1	0	0	0	0	0	0	0	0	0	0	0
2	3	3	2	0	0	0	0	0	0	0	0	0	0	0	0
3	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0
4	3	3	2	0	0	0	0	0	0	0	0	0	0	0	0
5	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0
6	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0
Cour	3	3	2	0	0	0	0	0	0	0	0	0	0	0	0
s e															

English Communication Skills Lab											
SEMESTER - I											
Subject Code	18CMEGL2050	Internal Marks	15								
Number of Practical	02	External Marks	35								
Hours/Week											
Total Number of	32	Exam Hours	03								
Practical Hours											

Credits – 01

Objectives:

To enable the students to learn communication skills of Listening, Speaking, Reading and Writing by focusing on:

Listening Comprehension

Pronunciation

Functional English in formal and Informal Situations

Interpersonal Communication Skills

Presentation Skills

List of Experiments

UNIT I

Listening Comprehension

UNIT II

Pronunciation, Stress, Intonation & Rhythm

UNIT III

Common Everyday Situations: Conversations & Dialogues,

Communication at Workplace

UNIT IV

Interpersonal Communication Skills- Group discussions and debates

UNIT V

Formal Presentations

Outcomes:

By the end of the course the students will be able to acquire basic

Proficiency in English by practicing the following:

Listening Comprehension

Pronunciation

Dialogues

Interpersonal Communication Skills

Presentation Skills

Discussions and Debates

Learning Resources:

Ted Talks, Interviews with Achievers and select movies

Toastmaster's speeches and table topics

Book Reviews and movie reviews

Exercises in Spoken English Parts: I-III, CIEFL, Hyderabad.

Oxford Guide to Effective Writing and Speaking by JohnSeely

https://www.ted.com/talk

Course Outcomes Vs Program Outcomes Mapping

C PO PO PO PO PO PO PO PO PO PO1 PO1 PO1												
С	PO	PO1	PO1	PO1								
0	1	2	3	4	5	6	7	8	9	0	1	2
1	-	-	-	-	-	-	-	-	-	2	-	-
2	-	-	-	-	-	-	1	-	-	3	-	-
3	-	-	-	-	-	-	-	-	-	3	-	-
4	-	-	-	-	-	-	-	-	-	2	-	-
5	-	-	-	-	-	-	-	-	-	3	-	-
6	-	-	-	-	-	-	-	-	-	2	-	-

ENGINEERING CHEMISTRY LABORATORY											
SEMESTER - I											
Subject Code	18CMCHL2060	Internal Marks	15								
Number of Practice	03	External Marks	35								
Hours/Week											
Total Number of	36	Exam Hours	03								
Practice Hours											

Credits - 1.5

COURSE OBJECTIVES:

The objectives of this course, help the students to:

- 1. Measure molecular properties like surface tension and viscosity
- 2. Determine chloride content of water of given water sample.
- 3. Familiarize the synthesis of a simple drug.
- 4. Determine rate constant as a function of time.
- 5. Determine the strength of acids using conductivity meter.
- 6. Determine amount of Fe (II) using potentiometer.

List of Experiments

(Any 10 experiments must be conducted)

- 1. Determination of surface tension
- 2. Determination of viscosity of a liquid by Ostwald viscometer
- 3. Thin layer chromatography
- 4. Determination of chloride content of water
- 5. Determination hardness of water by EDTA.

Determination of the rate constant of first order reaction (Ester hydrolysis)

Determination of strength of strong acid using conductometric titration.

Determination of strength of weak acid using conductometrictitration.

- 9. Determination of Ferrous iron using potentiometer.
- 10. Synthesis of a drug Aspirin
- 11. Determination of the partition coefficient of a substance between two immiscible liquids
- 12. Determination of strength of acetic acid using charcoaladsorption.

Demonstration Experiments:

- Preparation of lattice structure and determination of atomicpacking factor.
- 2. Chemical oscillations- Iodine clock reaction
- 3. Synthesis of Phenol formaldehyde resin
- 4. Saponification of oil

COURSE OUTCOMES:

On completion of the course student will be

Able to measure molecular properties like surface tension and viscosity

Able to determine chloride content of given water sample.

Able to synthesize a drug.

Able to determine rate constant as a function of time.

Able to determine strength of acids using conductivity meter.

Able to determine amount of Fe (II) using potentiometer.

Course outcomes to Program outcomes mapping:

CO	PO	PO1	PO1	PO1								
	1	2	3	4	5	6	7	8	9	0	1	2
1	-	3	-	-	-	-	-	-	-	-	-	-
2	-	3	-	-	-	-	-	-	-	-	-	-
3	-	3	-	-	-	-	-	-	-	-	-	-
4	3	-	-	-	-	-	-	-	-	-	-	-
5	-	3	-	-	-	-	-	-	-	-	-	-
6	-	3	-	-	-	-	-	-	-	-	-	-
Cours	2	3	-	-	-	-	-	-	-	-	-	-
e												

BASIC ELECTRICAL ENGINEERING LAB												
SEMESTER - I												
Subject Code	18CMEEL2070	Internal Marks	15									
Number of Practice Hours/Week	3P	External Marks	35									
Total Number of Practice Hours	32	Exam Hours	03									
	Cradita 1.5											

Credits – 1.5

Course Objectives:

The objectives of this course, help the students to Learn how to find the frequency response and resonance of RL &RC circuits

2. Learn how to verify the given networks using theorems Learn how to measure the power and determination of efficiency of a single phase transformer and how to measure the power in three phase transformer

Learn how to determine the Torque-slip characteristics of a deshunt and induction motors.

5. Learn how to find the regulation of an alternator Learn the operation of different converter circuits and knowabout the switch gear system

List of Experiments (Any Ten experiments must be conducted)

- 1. Study of R-L,R-C,R-L-C circuits.
- 2. Verification of superposition theorem.
- 3. Verification of Thevenin's and Norton's theorems.
- 4. Series and Parallel resonance of RL and RC circuits.
- 5. Open circuit & Short circuit tests on a single phase transformer.

Three-phase transformers: Star and Delta connections. Voltageand Current relationships (line-line voltage, phase-to-neutral voltage, line and phase currents). Phase-shifts between the primary and secondary side. Cumulative three-phase power in balanced three-phase circuits.

- 7. Speed control of DC shunt motor.
- 8. Torque Speed Characteristic on single phase induction motor
- 9. Regulation of Alternator.
- 10. Demonstration of Buck and Book converter
- 11. Demonstration of Voltage Source Inverter
- 12. Demonstration of Low Voltage Switch gear.

COURSE OUTCOMES:

On completion of this course, students are

- Able to determine the time response and resonance of given RL, RC and RLC circuits
- 2. Able to determine the response using Superposition, Norton and Thevinins.
- 3. Able to determine the power , efficiency and regulation of ac machines
- 4. Able to determine the speed torque characteristics of dc and induction motors
- 5. Able to analyze the operation of Buck and boost converter and voltage source inverter.
- 6. Able to analyze the operation of LV Switch gear system.

Course outcomes to Program outcomes mapping:

COs/	PO	PO	PO	PO		PO	PO	P	P	PO	PO	PO	PS	PS	PS
POs	1	2	3	4	5	6	7	\mathbf{o}	O	1	1	1	O	О	O
								8	9	0	1	2	1	2	3
1	2	2	0	2	0	0	0	0	0	0	0	0	0	0	0
2	2	2	0	2	0	0	0	0	0	0	0	0	0	0	0
3	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0
4	3	3	2	0	0	0	0	0	0	0	0	0	0	0	0
5	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0
6	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0
Cour	2	2	1	1	0	0	0	0	0	0	0	0	0	0	0
S															
e															

CONSTITUTION OF INDIA, PROFESSIONAL ETHICS & **HUMAN RIGHTS** SEMESTER - I Subject Code 18CMMSN2080 Internal Marks 30 External Marks 70 3 Number of Lecture Hours/Week 50 Exam Hours 03 Total Number of Lecture Hours Credits - 00 **COURSE OBJECTIVES:** The objectives of this course help the students to To provide basic information about Indian constitution. 2. To identify individual role and ethical responsibility towards society. To understand human rights and its implications. Unit -1 Lesson: Introduction to the Constitution of India, The Making of the Constitution and Salient features of the Hours Constitution. Preamble to the Indian Constitution - 10 Fundamental Rights & its limitations. Unit -2 Lesson: Directive Principles of State Policy & Relevance of Directive Principles State Policy Hours Fundamental Duties, Union Executives-President. - 10 Prime Minister Parliament Supreme Court of India. Unit -3Lesson: State Executives – Governor, Chief Minister, Hours State Legislature High Court of State. Electoral Process in -10India, Amendment Procedures, 42nd, 44th, 74th, 76th, 86th &91st Amendments. Unit - 4Lesson: Special Provision for SC & ST Special Provision for Women, Children & Backward Classes Emergency Provisions. Human Rights -Meaning and Definitions, Legislation Hours Specific Themes in Human Rights- Working of National -10Human Rights Commission in India Powers and functions of Municipalities, Panchyats and Co-

Operative Societies.
Unit – 5

Lesson: Scope &	Aims	of	Engineering	Ethics,	
Responsibility of Engi	neers Im	pedin	nents to Respon	nsibility.	Hours
Risks, Safety and liab	ility of I	Engin	eers,	•	- 10
Honesty, Integrity & R	eliability	in En	gineering.		

COURSE OUTCOMES:

On completion of the course student will

Have general knowledge and legal literacy and thereby totake up competitive examinations.

Understand state and central policies, fundamental duties.

Understand Electoral Process, special provisions.

Understand powers and functions of Municipalities, Panchayats and Co-operative Societies, and

Understand Engineering ethics and responsibilities of Engineers Understand Engineering Integrity & Reliability

QUESTION PAPER PATTERN:

SECTION A:

This section will have 5 questions with internal choice.

Each full question carries 14 marks.

Each full question will have sub question covering alltopics under a unit.

Text Books:

- 1. Durga Das Basu: "Introduction to the Constitution on India", (Students Edn.) Prentice –Hall EEE, 19th / 20th Edn., 2001
- 2. Charles E. Haries, Michael S Pritchard and Michael J. Robins

"Engineering Ethics" Thompson Asia, 2003-08-05.

REFERENCE BOOKS:

- 1. M.V.Pylee, "An Introduction to Constitution of India", Vikas Publishing, 2002.
- M.Govindarajan, S.Natarajan, V.S.Senthilkumar, "Engineering Ethics", Prentice –Hall of India Pvt. Ltd. New Delhi, 2004
- Brij Kishore Sharma, "Introduction to the Constitution of India", PHI Learning Pvt. Ltd., New Delhi, 2011.
- 4. Latest Publications of Indian Institute of Human Rights, New Delhi

ENGINEERING MATHEMATICS-II							
	SEMESTER - II						
Subject Code	18CMMAT2010	Internal Marks	30				
Number of Lecture	3(L)+1(T)	External Marks	70				
Hours/Week							
Total Number of	50	Exam Hours	03				
Lecture Hours							

Credits - 04

Course objectives:

To enable students to apply the knowledge of Mathematics invarious engineering fields by making them to learn the following

- To solve system of linear equations
- To find eigen values and eigen vectors of a matrix
- To solve initial value problems by using Laplace transforms
- To find the solution of algebraic/ transcendental equations and also interpolate the functions.
- To evaluate numerical integration and to solve ordinary differential equations by using numerical methods.
- To find Fourier series of a periodic function and to determine the Fourier transform of a function

Unit -1	
Linear Algebra: Rank of a matrix by elementary transformations, solution of system of linear equations - Gauss-elimination method, Gauss-Jordan method – Jacobi method and Gauss-Seidel method – Eigen values and Eigen vectors, Properties of Eigen values and Eigen vectors - Linear transformation, Diagonalisation of a square matrix. Cayley-Hamilton theorem (without proof)	10 Hours
- Reduction of Quadratic form to Canonical form.	
Unit -2	
Laplace Transforms: Laplace transforms of standard functions-Shifting theorems - Transforms of derivatives and integrals – Unit step function –Dirac's delta functionInverse Laplace transforms – Convolution theorem (without proof). Applications: Solving ordinary differential equations (initial value problems) using Laplace transforms	10 Hours
Unit – 3	

Course outcomes:

On completion of this course, students are able to,

- 1. Solve system of linear equations
- 2. Find eigen values and eigen vectors of a matrix
- 3. Solve initial value problems by using Laplace transforms
- 4. Find the solution of algebraic/ transcendental equations and also interpolate the functions.
- 5. Evaluate numerical integration and to solve ordinary differential equations by using numerical methods.
- 6. Find Fourier series of a periodic function and to determine the Fourier transform of a function

Question paper pattern:

Section A:

- 1. This Section will have 10 questions.
- 2. Each full question carry 14 marks.
- 3. Each full question will have sub question covering all topics under a unit.
- 4. The student will have to answer 5 full questions selecting onefull question from each unit.

Text Books:

- B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016.
- Kreyszig, "Advanced Engineering Mathematics " Wiley, 9th Edition, 2013.

Reference Books:

- B.V.Ramana "Higher Engineering M athematics" Tata McGraw-Hill, 2006
- 2. N P Bali and Manish Goyal, "A text book of Engineering mathematics", Laxmi publications, 7th edition.
- 3. H. K Dass and Er. Rajnish Verma ,"Higher Engineerig Mathematics", S. Chand publishing, 1st edition, 2011.
- Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics, Volume II" Scitech Publications, 2017.

Course outcomes to Program outcomes mapping:

СО	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	PO 10	PO 11	PO 12
1	2	3	1	1	1	1	-	-	-	-	-	1
2	2	3										
3	2	3	-	-	-	1	-	-	-	-	-	-
4	2	3	-	-	-	1	-	-	-	-	-	-
5	2	3	-	-	-	1	-	-	-	-	-	-
6	2	3	1	1	1	1	-	-	-	-	-	1
Cou rse	2	3	-	-	-	-	-	-	-	-	-	-

ENGINEERING PHYSICS Semiconductor Physics & Semiconductor Optoelectronics SEMESTER - II Subject Code 18CTPHT2020 Internal Marks

Subject Code	18CTPHT2020	Internal Marks	30
Number of Lecture Hours/Week	3+1(T)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03

Credits - 04

Course objectives:

The objectives of this course, help the students

- To impart the knowledge of Quantum mechanics for understanding the conducting mechanism in solids
- To understand the physics of semiconductors and their working mechanism for their utility.

Unit -1	
Electronic materials Free electron theory, Classical &Quantum theory, Densityof states, Fermi level, Occupation probability, Bloch theorem, Kronig-Penny model (to introduce origin of band gap), E-k diagram and Effective mass. Types of electronic materials: metals, semiconductors, and insulators.	Hours - 12
Unit -2	
Semiconductors Intrinsic and extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature (equilibrium carrier statistics), Carrier generation and recombination, Carrier transport: diffusion and drift, p-n junction, Hall effect and its applications.	Hours - 10
Unit – 3	

Light	-semicon	ductor	interaction
LIZIL	-SCHIICOH	uucivi	milli action

Types of Semiconductor materials of interest for optoelectronic devices, band gap modification, Hetero structures; Optical transitions in bulk semiconductors: absorption, spontaneous emission, and stimulated emission; Joint density of states, Density of states for photons, Transition rates (Fermi's golden rule), Optical

Hours -10

loss and gain; Photovoltaic effect.

Unit -4

Semiconductor light emitting diodes (LEDs)

Direct and indirect band gap semiconductors, InjectionElectro luminescence, LED: Device structure, materials, characteristics, Laser diode, Quantum well, wire, and dot based lasers

Hours

-9

Unit - 5

Unit-5: Photodetectors & Low-dimensional optoelectronic devices

General properties of Photo detectors, Photo conductors, Types of semiconductor photo detectors -p-n junction, PIN, and Avalanche and their structure, materials, working principle, and characteristics, Noise limits on performance; Solar cells.

Hours

COURSE OUTCOMES:

On completion of the course student will be able to

- 1. Understanding the conducting mechanism in metals using free electron theory and quantum mechanics
- 2. Estimate the concentration of charge carriers using Fermi level in semiconductors.
- 3. Understanding light-semiconductor interaction
- 4. Illustrate the working function of LEDs and diode lasers.
- 5. Illustrate the working function of photo detectors.
- 6. Illustrate the working function of solar cells.

QUESTION PAPER PATTERN:

SECTION A:

- 1. This section will have 5 questions with internal choice.
- Each question carries 14 marks.
 Each full question comprises sub questions covering alltopics under a unit.

TEXT BOOKS:

- 1. S.O. Pillai, Solid state physics, New age publications.
- B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons,

REFERENCE BOOKS:

- Ch. Srinivas, Ch. Seshubabu, Engineering Physics, Cengage learning publications.
- P. Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall of India (1997).
- Online course: "Semiconductor Optoelectronics" by M R Shenoy on NPTEL
- 4. Online course: "Optoelectronic Materials and Devices" by Monica Katiyar and Deepak Gupta on NPTEL

	P	P	P	P	P	P	P	P	P	PO		PO	PS	P	PS
CO	0	0	0	0	0	0	0	0	0	10	11	12	O	S	O
	1	2	3	4	5	6	7	8	9				1	o	3
1	-	_	- 1											2	
1	3	2	1	-	-	-	-	-	-	-	-	-	•	•	•
2	3	2	1	3	-	-	-	-	-	-	-	-	-	-	-
3	3	1	1		-							-	-	•	-
4	3	1	2	3	-	-	-	-	-	-	-	-	-	-	-
5	3	1	2	3	-	-	-	-	-	-	-	-	-	-	-
6	3	1	3	3	-		-	-			•	-	•	-	•
Co	3	2	2	2	-	-	-	-	-	-	-	-	-	-	-
u															
rse															

PROGRA	MMING FOR PROBL SEMESTER - II	EM SOLVING							
Subject Code:	18CMCTT2030	Internal Marks	30						
Number of Lecture Hours/Week	3	EA Marks	70						
Total Number of Lecture Hours	50	Exam Hours 03							
	Credits - 03								
Unit-I: Introduction to programming History & Hardwar	Hours								
Types of Software, Memory units. Introduction to Problem solving: Algorithm, characteristics of Algorithms, Basic operations of algorithms, Pseudocode, Flowchart, Types of languages, Relation between Data, Information, Input and Output. Basics of C: History and Features of C, Importance of C, Procedural Language, Compiler versus Interpreter, Structure of C Program, Program development steps, programming errors.									
Unit-II: C Expression	s, evaluation and cont	rol statements							
Variables, Constants, Associativity, convert expressions, evaluati functions. Conditional Branchi Nested ifelse stat statement. Unconditional Branch Control flow statement	0 0	precedence and pressions to C- s, Input/output else statement, ladder, switch	Hours- 12						

Arrays: Introduction, 1-D Arrays, Character arrays and string representation, 2-D Arrays (Matrix), Multi-Dimensional Arrays. Functions: Basics, necessity and advantages, Types of functions, Parameter passing mechanisms, Recursion, Storage Classes, Command Line Arguments, Conversion from Recursion to Iteration and vice-versa. Strings: Working with strings, String Handling Functions (both library and user defined).	Hours -10
Unit-IV: Derived and User Defined Data types	
Pointers: Understanding Pointers, Pointer expressions, Pointer and Arrays, Pointers and Strings, Pointers to Functions. Dynamic Memory Allocation: Introduction to Dynamic Memory Allocation malloc, calloc, realloc, free. Structures and Unions: Defining a Structure, typedef, Advantage of Structure, Nested structures, Arrays of Structures, Structures and Arrays, Structures and Functions, Structures and Pointers, Defining Unions, Union within union, Structure within union, Union within structure, self-referential structures, bitfields, enumerations.	Hours -12
Unit-V: Preprocessing and File Handling	
Preprocessing Directives: Macro Substitution, FileInclusion, conditional compilation and other directives File Management in C: Introduction to File Management, Modes and Operations on Files, Types of files, ErrorHandling During I/O Operations.	Hours -08
Text Books: 1. Computer Programing ANSI C, E Balagurusamy, Mc Gra Hill Education(Private), Limited (TB1) 2. Programming in C, Reema Thareja, Second Edition, Oxfo Higher Education (TB2)	
Reference Books: 1. Computer Basics and C Programming, V Raja Raman, Secondary Computer Basics and C Programming, V Raja Raman, Secondary Computer Basics and C Programming, V Raja Raman, Secondary Computer Basics and C Programming, V Raja Raman, Secondary C Programming, V Raja Raman, Second	ond

Edition, PHI (RB1)

Course Outcomes:

Student will be able to

- 1) formulate algorithms, translate them into programs and correct program errors.
- choose right control structures suitable for the problem to be solved.
- 3) decompose reusable code in a program into functions.
- 4) make use of arrays, pointers, structures and unions effectively.
- 5) store and retrieve data from permanent storage.
- 6) learn file operations

Question paper pattern:

Section A:

- 1. This Section will have 10 questions.
- 2. Each full question carries 14 marks.
- 3. Each full question will have sub question covering all topics under a unit
- The student will have to answer 5 full questions selecting one full question from each unit.

COs VS POs MAPPING

CO	P	P	P	P	P	P	P	P	P	PO	PO	PO	PS	PS
	О	O	O	O	O	O	O	O	O	10	11	12	O	O
	1	2	3	4	5	6	7	8	9				1	2
1	2	3	1		3									
2	2	3	3		1									
3	3	2	3		1									
4	2	2	3		1									
5	2	2	2											
6	2	2	2		1									
Cou	2	2	3		2									
r														
se														

ENGINEERING GRAPHICS SEMESTER - II											
Subject Code	18CMMEL2040	Internal Marks	30								
Number of Lecture Hours/Week	1(L)+04(P)	External Marks	70								
Total Number of Lecture Hours	50	Exam Hours	03								

Credits - 03

COURSE OBJECTIVES:

- Students should be able to construct Polygons using general methods, inscribe and describe polygons on circles, draw curves (parabola, ellipse and hyperbola, cycloids, involutes by general methods
- 2. Students should be able to read, interpret and construct plain scales, diagonal scales and vernier scales
- Student should be able to draw orthographic projections of points, lines, Planes & Solids inclined to one reference plane. Students are should be able to apply various concepts to solve practical problems related to engineering.
- 4. Student should be able to draw sections and sectional views of Solids
- 5. Student should be able to draw isometric view of lines, plane figures and simple solids. Student should be able to convert given isometric views into orthographic views. Students should be able to apply various concepts to solve practical problems related to engineering
- 6. Student should be able to draw objects using draw and modify toolbars of AutoCAD

Unit -1	
Introduction to Engineering Drawing covering, Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections – Ellipse, Parabola, Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales.	Hours– 10
Unit -2	
Projections of Points and lines inclined to both planes; Projections of planes inclined to one plane	Hours- 08
Unit – 3	
Projections of Solids - Prisms, Pyramids, Cones and	Hours-
Cylinders with the axis inclined to one of the planes	10

Unit – 4	
Sections and Sectional Views of Right Angular Solids	Hours-
covering, Prism, Cylinder, Pyramid, Cone	10
Unit – 5	
Isometric Projections covering, Principles of Isometric projection — Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simpleand compound Solids; Conversion of Isometric Views to o orthographic Views and Vice-versa, Conventions Introduction to AUTOCAD-The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows	Hours- 12

COURSE OUTCOMES:

- 1. Students will be able to construct Polygons using general methods, inscribe and describe polygons on circles, draw curves (parabola, ellipse and hyperbola, cycloids, involutes by general methods
- 2. Students will be able to read, interpret and construct plain scales, diagonal scales and vernier scales
- 3. Student will be able to draw orthographic projections of points, lines, Planes & Solids inclined to one reference plane. Students will be able to apply various concepts to solve practical problems related to engineering.
- 4. Student will be able to draw sections and sectional views of Solids
- 5. Student will be able to draw isometric view of lines, plane figures and simple solids. Student will be able to convert given isometric views into orthographic views. Students will be able to apply various concepts to solve practical problems related to engineering
- Student will be able to draw objects using draw and modifytoolbars of AutoCAD

QUESTION PAPER PATTERN:

SECTION A: (14M)

1. This section contains four questions carrying differentweightage.

SECTION B: (4x14=56M)

- 1. This section will have 5 questions with internal choice.
- 2. Each full question carries 14 marks.
- 3. Each full question will have sub question covering all topics under a unit.

Text/Reference Books:

- 1. Engineering Drawing by N.D. Bhatt, Chariot Publications
- Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers
- Engineering Drawing by K.L.Narayana & P. Kannaiah, Scitech Publishers
- 4. Engineering Graphics for Degree by K.C. John, PHI Publishers

P	P	P	P	P	P	P	P	P	P	PO	PO	PO	PS	PS	PS
O	О	O	О	O	O	О	О	О	O	10	11	12	О	О	О
CO	1	2	3	4	5	6	7	8	9				1	2	3
1	2		3							3		2			
2	2		3							3		2			
3	2		3							3		2			
4	2		3							3		2			
5	2		3							3		2		2	
6	2		3							3		2		2	
Ove	2		3							3		2		2	
r all															

ENGINEERING PHYSICS LABORATORY SEMESTER - II											
Subject Code	18CTPHL2050	Internal Marks	15								
Number of Practice Hours/Week	03	External Marks	35								
Total Number of Practice Hours	36	Exam Hours	03								

Credits - 1.5

COURSE OBJECTIVES:

The objectives of this course, help the students

To apply the theoretical knowledge of Physics throughhands on the experimental instruments

- To improve the experimental knowledge in the later studies
- To understand the basic need of experiments.
- To know how to measure the different physical quantities.
- To gain the knowledge about different electrical components and basic electrical circuits.

List of Experiments

To study atomic levels in Neon- Argon gasses-Franc hertzexperiment.

To determine resistivity of wire using four probe methods.

To determine the Boltzmann constant using PN junctiondiode.

To determine the Energy band gap of P-N junction diode.

To determine the Hall coefficient-Hall effect

To study the spectral response of photo diode-Planck's constant

To draw the LED current-voltage characteristics.

To draw the diode laser (LD) current-voltage characteristics.

To draw the Photo diode current-voltage characteristics.

To measure the current-voltage characteristics of a solar cell (Photovoltaic cell) at different light intensities.

COURSE OUTCOMES:

On completion of the course student will able to

- 1. Understand the existence of the energy levels in gasses
- 2. Study the resistivity variation with temperature in conductor
- 3. Determine the energy band gap of semiconductor diode.
- 4. Understand the phenomenon of Hall effect
- 5. Understand the interaction of the light with semiconductor
- 6. Study the characteristic curves of the LEDs, LD & Solarcells.

C O	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 1 0	P O 1 1	P O 1 2	P S O 1	P S O 2	P S O 3
1	3	1	-	3	-	-	-	-	-	-	-	-	-	-	-
2	3	1	ı	3		-	1	1	1	1		1	•	1	•
3	3	1	ı	3	•	-		•	•	•	ı	•	•	•	-
4	3	1		3			1	1		-	-	1			
5	3	1		3	-		1	1	1	-	-	1	•		
6	3	1	-	3	-	-	-	-	-	-	-	-	-	-	-
Cour se	3	1	-	3	-	-	-	-	-	-	-	-	-	-	-

PROGRAMMING FOR PROBLEM SOLVING LAB SEMESTER - II											
Subject Code	18CMCTL2060	Internal Marks	15								
Number of Practice Hours/Week	04	External Marks	35								
Total Number of Practice Hours	36	Exam Hours	03								

Credits - 02

Objectives:

- To apply programming for basic mathematical functions
- To design and program mathematical concepts.
- To create and use the functions and library functions
- Able to apply the theoretical knowledge of formatting of documents
- To create and apply user defined types to the real-world problems.
- To create files and shapes of the concepts.

List of Experiments

Exercise 1 (Familiarization with programming environment)

- Familiarization of CODE BLOCKS C++ Editor to edit, compile, execute, test and debugging C programs.
- b) Familiarization of RAPTOR Tool to draw flow charts and understand flow of control.
 - c) Acquittance with basic LINUX commands.

Exercise 2 (Simple computational problems using arithmetic expressions)

- a) Write a C Program to display real number with 2 decimal places.
- Write a C Program to convert Celsius to Fahrenheit and vice versa.
- Write a C Program to calculate the area of triangle using the formula

area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$
 where $s = (a+b+c)/2$

d) Write a C program to find the largest of three numbers using ternary operator.

Write a C Program to swap two numbers without using a temporary

variable.

Exercise 3 (Problems involving if-then-else structures)

- Write a C Program to check whether a given number is even or odd using bitwise operator, shift operator and arithmetic operator.
- b) Write a C program to find the roots of a quadratic equation.
- c) Write a C Program to display grade based on 6 subject marks using if...else...if ladder.
- d) Write a C program, which takes two integer operands and one operator form the user, performs the operation and then
- e) prints the result using switch control statement. (Consider the operators +, -, *, /, %)

Exercise 4 (Iterative problems)

- Write a C Program to count number of 0's and 1's in a binary representation of a given number.
- b) Write a C program to generate all the prime numbers between two numbers supplied by the user.
- Write a C Program to print the multiplication table corresponding to number supplied as input.

Exercise 5 (Iterative problems)

- a) Write a C Program to Find Whether the Given Number is
 - i) Armstrong Number ii) Palindrome Number
- b) Write a C Program to print sum of digits of a given number

Exercise 6 (Series examples)

- a) Write a C Program to calculate sum of following series
- b) 1+2+3+... N b)1+1/2+1/3+....+1/n c)1+x+x2+x3....+xn

Exercise 7 (1D Array manipulation)

- a) Write a C program to interchange the largest and smallest numbers in the array.
- b) Write a C program to search an element in an array (linear search).
- c) Write a C Program to print the following pattern using a character array

S

SA

SAS

SASI

Exercise 8 (Matrix problems, String operations)

- a) Write a C program to add two matrices.
- b) Write a C program to multiply two matrices if they are compatible or print an error message "incompatible matrix sizes" otherwise.
- c) Write a C program to check given matrix is symmetric or not.

- d) Implement the following string operations with and withoutlibrary functions.
 - i) copy ii) concatenate iii) length iv) compare

Exercise 9 (Simple functions)

- a) Write a C Program demonstrating the following function types
 - i. With arguments and with return value.
 - ii. With arguments and without return value
 - iii. Without arguments and without return value.
 - iv. Without arguments and with return value.
 - Write a C Program illustrating call by reference

Exercise 10 (Recursive functions)

Write a C Program illustrating the following with Recursion without Recursion

a) Factorial b) GCD c) Power d) Fibonacci

Exercise 11(Pointers and structures)

- a) Write a C program to find sum of n elements entered by user. To perform this program,
 - allocate memory dynamically using malloc () function.
- b) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc () function.
 - Note: Understand the difference between the above two programs.
- Write a C Program to read and print student details using structures.

Exercise 12 (File operations)

- Write a C program to open a file and to print it contents on screen.
- b) Write a C program to copy files
- c) Write a C Program that merges two files on to a new file.
- d) Write a C Program to delete a file.

COURSE OUTCOMES:

- Attain knowledge on using CODE BLOCKS and RAPTOR tools in solving problems.
- 2. Examine and analyze alternative solutions to a problem.
- 3. Design an algorithmic solution to a problem using problem decomposition and step-wise refinement.
- Demonstrate conversion of iterative functions to recursive and vice-versa.
- 5. Implement the concepts of arrays.
- 6. Implement the structures, Unions and files.

PO P														
PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	2
1	3	3	3		3									
2	2	3	3		2									
3	2	3	3		2									
4	2	3	3		2									
5	2	3	3		2									
6	2	3	3		2									
Cou	2	3	3		2									
rse														

WORKSHOP/MANUFACTURING PRACTICE							
	SEMESTER - II						
Subject Code	18CMMEL2070	Internal Marks	15				
Number of Practice	03	External Marks	35				
Hours/Week							
Total Number of	36	Exam Hours	03				
Practice Hours							
	Credits _ 1.5						

COURSE OBJECTIVES:

- Students should be able to learn the basic manufacturing processes, study the various tools and equipment used and gain hands-on experience in different trades.
- 2. Students should be able to learn the engineering and technology involved in carpentry, fitting, black smithy, foundry, welding, machining and plastic moulding.
- 3. Students should understand the workmanship required, working of machinery or equipment necessary.

i. Lectures & videos: (10 hours)

- 1. Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods (3 lectures)
- 2. CNC machining, Additive manufacturing (1 lecture)
- 3. Fitting operations & power tools (1 lecture)
- 4. Electrical & Electronics (1 lecture)
- 5. Carpentry (1 lecture)
- **6.** Plastic moulding, glass cutting **(1 lecture)**
- 7. Metal casting (1 lecture)
- **8.** Welding (arc welding & gas welding), brazing **(1 lecture)**

SI. NO.	Name of Shop floor	Exercises				
1.	Blacksmithy	1. S-Hook				
1.		2. Square Rod To Round Rod				
2.	Carpentry	1. T-Lap Joint				
۷.		2. Cross Lap Joint				
3.	Foundry	1. Mould for a Solid				
3.		2. Mould for a Split Pattern.				
4.	Fitting	1. Square Fitting				
		2. V-Fitting				
5.	Welding	1. Butt Joint				
5.	weiding	2. Lap Joint				
6.	Machine Tools	1. Turning				
0.	Widefillie 100is	2. Knurling				
7.	Plastic Molding	1. Key chain				

COURSE OUTCOMES:

- 1. Students will be able to make use of basic carpentry joints to make furniture.
- 2. Students will be able to fabricate mechanical engineering assemblies using fitting joints.
- 3. Students will be able to produce various machine components by using foundry, black smithy, machining and plastic molding techniques.

P CO	P 0 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	PO 10	PO	PO 12	PS O 1	PS O 2	PS O 3
1	3														
2	3														
3	2				1				1						
Cou rse	3				1				1						

	ENVIRONMENTA SCIENCE SEMESTER - II	L	
Subject Code	18CMCHN1080	Internal	30
		Marks	
Number of Lecture	04	External	70
Hours/Week		Marks	
Total Number of	50	Exam	03
Lecture Hours		Hours	

Credits - 00

COURSE OBJECTIVES:

The objectives of this course, help the students to

- 1. Know the importance of Environmental studies and the measures to be taken to overcome global environmental challenges.
- 2. Understand the concept of ecosystem and its diversity.
- 3. Gain knowledge on natural resources.
- 4. Understand the concept of biodiversity.
- 5. Gain knowledge on environmental pollution.
- 6. Gain knowledge on environmental legislation and globaltreaties.

Unit -1	
MULTIDISCIPLINARY NATURE OF	
ENVIRONMENTAL STUDIES	
Environment - Definition, Introduction - Scope	
andImportance - Global environmental challenges, global	
warming & climate change - Acid rains, ozone layer	
depletion - Carbon credits - Sustainability, Stockholm &	
Rio Summit - Population growth & explosion - Role of	10
Information Technology in Environment and human health.	10
Ecosystem - Concept of an ecosystem Structure and	
function of an ecosystem Producers, consumers and	
decomposers Energy flow in the ecosystem - Ecological	
succession Food chains, food webs and ecological	
pyramids Introduction, types, characteristic	
features, structure and function of the different ecosystems	
Unit -2	
NATURAL RESOURCES	
Renewable and non-renewable resources – Natural	
resources and associated problems -Forest resources -	
Use and over – exploitation, deforestation - Timber	

extraction – Mining, dams andother effects on forest and	
tribal people	
Water resources – Use and over utilization of surface and	
ground water – Floods, drought, conflicts over water,	
dams – benefits and problems Mineral resources: Use and	12
exploitation, environmental effects of extracting and using	
mineral resources.	
Food resources: World food problems, changes caused by	
agriculture and overgrazing, effects of modern agriculture,	
fertilizer-pesticide problems, water logging, salinity.	
Energy resources: Growing energy needs, renewable and	
non-renewable energy sources use of alternate energy	
sources. Role of an individual in conservation of natural	
resources. Equitable use of resources for sustainable	
lifestyles.	
Unit -3	
BIODIVERSITY AND ITS CONSERVATION	
Introduction - Definition: genetic, species and ecosystem	
diversity. – Biogeographical classification of India - Value	
of biodiversity: consumptive use, productive use, social,	
ethical, aesthetic and option values - Biodiversity at global,	
National and local levels. India as a mega-diversity nation -	6
Hot-spots of biodiversity - Threats to biodiversity: habitat	
loss - Endangered and endemic	
species of India – Conservation of biodiversity: In-situand	
Ex-situ conservation of biodiversity.	
Unit – 4	
ENVIRONMENTAL POLLUTION	
Definition, Cause, effects and control measures of:	
a. Air pollution	
b. Water pollution	
c. Soil pollution	
d. Marine pollution	12
e. Noise pollution	
f. Thermal pollution	
g. Nuclear hazards	
Solid waste Management: Causes, effects and control	
measures of urban and industrial wastes - Role of anindividual	
in prevention of pollution Pollution case studies.	

Unit – 5	
SOCIAL ISSUES AND THE ENVIRONMENT	
Urban problems related to energy -Water conservation, rain	
water harvesting, watershed management - Resettlement	
and rehabilitation of people its problems and concerns.	
Environment Protection Act - Air (Prevention and Control	
of Pollution) Act Water (Prevention and control of	
Pollution) Act -Wildlife Protection Act -Forest	10
Conservation Act -Issues involved in enforcement of	10
environmental legislationPublic awareness.	
Field work: Visit to a local area to document environmental	
assets River /forest grassland/hill/mountain	
-Visit to a local polluted site Urban/Rural/industrial/	
Agricultural Study of common plants, insects, birds	
Study of simple ecosystems - pond, river, hill slopes, etc.	

II B. Tech I Semester

S.		Subject	Į.	I	lour	S	
No.	Code	Type	Title	L	T	P	C
01	18CMMAT3010	BS	Engineering	3	1		4
			Mathematics-III				
02	18CTECT3020	ES	Digital	3			3
			Electronics				
03	18CTECT3030	ES	Analog	3			3
			Electronic				
			Circuits				
04	18CTCTT3040	PC	Discrete	3	1		4
			Mathematics				
05	18CTCTT3050	PC	Data Structures	3			3
06	18CTECL3060	ES	Analog & Digital			3	1.5
			Electronics Lab				
07	18CTCTL3070	PC	IT Workshop			3	1.5
			Lab				
08	18CTCTL3080	PC	Data Structures			3	1.5
			Lab				
							21.5
		Total (Credits				

II B. Tech II Semester

S.		I	Hour	s			
No.	Code	Type	Title	L	T	P	C
01	18CTECT4010	ES	Signals &	3			3
			Systems				
02	18CMCET4020	ES	Engineering	3			3
			Mechanics				
03	18CTCTT4030	PC	Computer	3			3
			Organization				
04	18CTCTT4040	PC	Algorithm Design	3			3
			and Analysis				
05	18CTCTT4050	PC	Java	3			3
			Programming				

06	18CTCTL4060	PC	Computer			3	1.5
			Organization Lab				
07	18CTCTL4070	PC	Algorithm Design			3	1.5
			and Analysis Lab				
08	18CTCTL4080	PC	Java			3	1.5
			Programming Lab				
		Total	Credits				

Engine	ering Mathematics –	III					
_	mon to all the branches						
Subject Code	18CMMAT3010	IA Marks	30				
Number of Lecture	ecture $3(L) + 1(T)$ Exam Marks						
Hours/Week							
Total Number of Lecture	50	Exam Hours	03				
Hours							
	Credits – 04						
Unit -1			Hours				
Function of a complex var Introduction –continuity properties – Cauchy –Riem coordinates. Harmonic an Milne – Thompson method	 differentiability- a ann equations in Cartes d conjugate harmonic 	sian and polar	08				
Unit -2							
Integration and series exp Complex integration: Line i Cauchy's in integral formu without proofs) Radius of convergence – ex Laurent series	ntegral – Cauchy's inte lla, generalized integra	l formula (all	10				
Unit – 3							
Singularities and Residue Theorem Zeros of an analytic function, Singularity, Isolated singularity, Removable singularity, Essential singularity, pole of order m, simple pole, Residues, Residue theorem, Calculation of residues, Residue at a pole of order m, Evaluation of real definite integrals: Integration around the unit circle, Integration around semi-circle, Indenting contours having poles on real axis.							
Unit – 4							
Discrete Random variable Introduction-Random varia Distribution function- E. Binomial, Poisson and Geo to data. Continuous Random varia Introduction-Continuous	ables- Discrete Rando expectation. Discrete ometric distributions an able and distributions	distributions: d their fitting	10				
function- Expectation-Co	ontinuous distribution	n: Uniform,					

Exponential and Normal distributions, Normal approximation to	
Binomial distribution	
Unit – 5	
Test of Significance:	
Introduction - Population and samples- Sampling distribution of	
means (σ -known) t-distribution- Sampling distribution of	ļ
means(σ -unknown), chi-square and F- test	
Hypothesis-Null and Alternative Hypothesis- Type I and Type	12
II errors -Level of significance - One tail and two-tail tests-	
Tests concerning one mean and proportion, two means-	
Proportions and their differences - ANOVA for one – way and	
two – way classified data	

Text	(T) / Reference(R) Books:
T1	Higher Engineering Mathematics, B.S. Grewal, Khanna publishers,
	44 th edition, 2016.
T2	Advanced Engineering Mathematics I, Erwin Kreyszig, Wiley, 9th
	Edition, 2013.
R1	Higher Engineering Mathematics, B.V. Ramana, Tata Mc Graw-
	Hill, 2006
R2	A text book of Engineering mathematics, N.P.Bali and Manish
	Goyal, Laxmi publications, 7th Edition.
R3	Higher Engineering Mathematics, H.K. Dass and Er. Rajnish
	Verma, S.Chand publishing, 1st edition, 2011.
R4	Probability and Statistics for Engineers, Dr. B.RamaBhupal
	Reddy, Research India Publications (DELHI), 2015.
W1	https://nptel.ac.in/courses/122107037/
W2	https://www.udemy.com/mathematics-for-engineering/

Cours	Course Outcomes: On completion of this course, students can					
CO1	CO1 Find the function of a complex variable					
CO2	Evaluate complex integration					
CO3	Expand functions using Taylor & Maclaurin's series					
CO4	Evaluate integrals using Residues					
CO5	Find the statistical parameters for distributions					
CO6	Test the hypothesis					

Course C	Course Outcomes to Program Outcomes Mapping: (1: Low, 2:													
Medium,	Medium, 3: High)													
							PO						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	-	-	-	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	-	-	-	-	-	-	-	-	-	-
CO3	2	3	-	-	-	-	-	-	-	-	-	-	-	-
CO4	2	3	-	-	-	-	-	-	-	-	-	-	-	-
CO5	2	3	-	-	-	-	-	-	-	-	-	-	-	-
CO6	2	3	-	-	-	-	-	-	-	-	-	-	-	-
Course	2	3	-	-	-	-	-	-	-	-	-	-	-	-

DI	NEW TO BE COMPONIE	10	
	GITAL ELECTRONIC		
Subject Code	18CTECT3020	Internal	30
		Marks	
Number of Lecture	3(L)	External	70
Hours/Week		Marks	
Total Number of	50	Exam	03
Lecture Hours		Hours	
	Credits – 03		
Unit -1 (Fundamentals o	of Digital Systems and l	ogic	Hours
families)			
Digital signals, digital circ	cuits, AND, OR, NOT, N	AND, NOR	
and Exclusive-OR opera			
IC gates, number syste			
hexadecimal number, b	inary arithmetic, one's	and two's	12
complements arithmetic,	codes, error detecting an	d correcting	
codes, characteristics of	digital lCs, digital log	gic families,	
TTL, Schottky TTL and O	CMOS logic, interfacing	CMOS and	
TTL, Tri-state logic			
Unit -2 (Combinational	Digital Circuits)		
Standard representation	for logic function	ns, K-map	
representation, simplifica	tion of logic functions u	sing K-map,	
minimization of logical	functions. Don't care	conditions,	
Multiplexer, De-Multiple	exer/Decoders, Adders,	Subtractors,	
BCD arithmetic, carry lo	ok ahead adder, serial a	ndder, ALU,	07
elementary ALU design	gn, popular MSI ch	ips, digital	
comparator, parity che	ecker/generator, code	converters,	
priority encoders, decode		evices, Q-M	
method of function realization	ation.		
Unit – 3 (Sequential circ	cuits and systems)		
1-bit memory, the circu	it properties of Bistabl	e latch, the	
clocked SR flip flop,	J- K-T and D-types	flip flops,	
applications of flip flops,	shift registers, applicat	ions of shift	
registers, serial to para	allel converter, paralle	el to serial	07
converter, ring count	er, sequence genera	tor, ripple	U/
(Asynchronous) counters	s, synchronous counter	rs, counters	
design using flip flops,		synchronous	
sequential counters, appli			
Unit – 4 (A/D and D/A C	Converters)		

Digital to analog converters: weighted resistor/converter, R-2R Ladder D/A converter, specifications for D/A converters, examples of D/A converter ICs, sample and hold circuit, analog to digital converters: quantization and encoding, parallel comparator A/D converter, successive approximation A/D converter, counting A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D converter ICs	12
Unit – 5 (Semiconductor memories and Programmable logic	c devices)
Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, read only memory (ROM), read and write memory(RAM), content addressable memory (CAM), charge de coupled device memory (CCD), commonly used memory chips, ROM as a PLD, Programmable logic array, Programmable array logic, complex Programmable logic devices (CPLDS), Field Programmable Gate Array (FPGA).	12

Text	(T) / Reference(R) Books:
T1	Modern Digital Electronics, R P Jain, McGraw Hill Education,
	2009.
T2	Digital logic and Computer design, M M Mano, Pearson
	Education India, 2016.
T3	Digital Design Principles & Practices, John F Wakerly, PHI/
	Pearson Education Asia, 3rd Ed., 2005.
T4	Switching Theory and Logic Design, Hill and Peterson Mc-Graw
	Hill TMH edition.
R1	Fundamentals of Digital Circuits, A Kumar, Prentice Hall India,
	2016.
R2	Fundamentals of Logic Design, Charles H Roth Jr, Jaico Publishers
W1	https://www.coursera.org/learn/digital-systems
W2	https://onlinecourses.nptel.ac.in/noc19_ee09/preview

Course Outcomes: On completion of this course, students can					
CO1	CO1 State and explain fundamental gates in digital circuits				
CO2	Apply Boolean algebra simplification methods to build basic combinatorial circuits				
CO3	Construct the sequential circuits & systems				

CO4	Explain converters especially basic operation of A/D and D/A
	converters
CO5	Describe Semiconductor memories and Programmable logic
	devices

Course	Out	tcom	ies 1	to P	rog	ram	Ou	tcon	nes	Map	ping:	(1:	Low,	2:
Medium	Medium, 3: High)													
							РО						PS	Ю
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	1	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	3	-	-	-	-	-	-	-	-	-	2	-
CO3	2	1	3	-	-	-	-	-	-	-	-	-	1	-
CO4	3	3	3	-	-	-	-	-	-	-	-	-	-	-
CO5	2	2	1	-	-	-	-	-	-	-	-	-	1	-
Course	3	2	3	-	-	-	-	-	-	-	-	-	1	-

Anal	og Electronic Circuits					
Subject Code	18CTECT3030	Internal	30			
		Marks				
Number of Lecture	3(L)	External	70			
Hours/Week		Marks				
Total Number of Lecture	50	Exam Hours	03			
Hours						
		Cred	its —			
		03				
Unit -1 (Diode Circuits)			Hours			
P-N junction diode, I-V cl			08			
half-wave and full-wave re-	ctifiers, Zener diodes, c	clamping and	VO			
clipping circuits						
Unit -2 (BJT circuits)						
Structure and I-V character	,					
as an amplifier: small-sign						
mirror; common-emitter, co			12			
amplifiers; Small signal of	equivalent circuits, his	gh-frequency				
equivalent circuits						
Unit – 3 (MOSFET Circuit	its)					
MOSFET structure and I						
switch. MOSFET as an						
biasing circuits, common-s			10			
drain amplifiers; small sign			10			
and output impedances,	transconductance, hig	h frequency				
equivalent circuit.						
Unit – 4 (Differential, mul						
Differential amplifier; pow	-	•				
stage amplifier; internal sta			08			
ideal op-amp, non-idealit			00			
voltage, input bias current, input offset current, slew rate, gain						
bandwidth product)						
Unit – 5 (Applications of o	pp-amp)					
Linear applications:						
Idealized analysis of op-			12			
inverting amplifier, diffe	•					
amplifier, integrator, acti	ve filter using op-a	mp, voltage				

regulator, oscillators (Wein bridge and phase shift). Analog to Digital Conversion.

Nonlinear applications:

Hysteretic Comparator, Zero Crossing Detector, Square-wave and triangular-wave generators. Precision rectifier, peak detector. Monoshot.

Text	(T) / Reference(R) Books:
T1	Microelectronic Circuits, A S Sedra and K C Smith, OUP, 1998.
T2	Introduction to Operational Amplifier theory and applications, J V Wait, L P Huelsman and G A Korn, McGraw Hill, 1992.
R1	Microelectronics, J Millman and A Grabel, McGraw Hill
	Education, 1988.
R2	The Art of Electronics, P Horowitz and W Hill, Cambridge
	University Press, 1989
R3	Analysis and Design of Analog Integrated Circuits, P R Gray, R G
	Meyer and S Lewis, John Wiley & Sons, 2001.
W1	https://onlinecourses.nptel.ac.in/noc18_ee45/preview
W2	https://swayam.gov.in/course/3835-analog-circuits

Course Outcomes: On completion of this course, students can							
CO1	Apply the characteristics of Diodes to various applications						
CO2	Distinguish the characteristics of transistors.						
CO3	Design and analyze various rectifier and amplifier circuits						
CO4	Design sinusoidal and non-sinusoidal oscillators.						
CO5	Design OP-AMP based circuits						

Course Outcomes to Program Outcomes Mapping: (1: Low, 2:														
Medium, 3: High)														
		PO											PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	1	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	3	-	-	-	-	-	-	-	-	-	2	-
CO3	2	1	3	-	-	-	-	-	-	-	-	-	1	-
CO4	3	3	3	-	-	-	-	-	-	-	-	-	-	-
CO5	2	2	1	-	-	-	-	-	-	-	-	-	1	-
Course	3	2	3	-	-	-	-	-	-	-	-	-	1	-

DISCRI	ETE MATHEMATICS								
Subject Code	18CTCTT3040	IA	30						
		Marks							
Number of Lecture	3(L) + 1(T)	Exam	70						
Hours/Week Marks									
Total Number of Lecture	50	Exam	03						
Hours Hours									
Credits – 04									
Unit -1: Propositions and P			Hours						
Propositional Logic (TB1:0									
Propositions, Variables, Co.	nnectives, Truth tables, C	onverse,							
Contrapositive, Inverse of a		mpound							
Propositions, Precedence rul									
Applications of Proposition	9 1								
Propositional Equivalences									
Logical Equivalences, Tauto		_							
Law, Satisfiability, Applicati	ons of Satisfiability, Comp	olexity in							
solving satisfiability problen									
Predicates and Quantifiers									
Predicates, Quantifiers,	,	Logical							
equivalences involving q			10						
Expressions (De Morgan's			10						
2	Jsing quantifiers in	System							
Specifications.									
Nested Quantifiers (TB1:05	*								
Statements involving nested	-								
translating to and from M	•								
statements involving nested quantifiers. Negating Nested									
Quantifiers.	1								
Inference Rules (TB1:069-0	·								
Valid Arguments in Propositional Logic, Rules of Inference for									
propositional logic, Checking Arguments validity, Rules of									
Inference for Quantified statements, Combining rules of									
Inference for propositions ar	-								
Unit-2: Number Theory an	9	hods							
Divisibility and Modular A			4.5						
Division, Division Algorith	ım, Modulo Dıvısıon, A	rithmetic	12						
modulo M	246 240 257 272)								
Integers and Primes (TB1:2	246-249, 257-272)								

08
00

Introduction, Basic Counting Principles, More Complex Counting Problems, The Subtraction Rule, The Division Rule, Tree Diagrams The Pigeonhole Principle (TB1: 399-407) Introduction, The Generalized Pigeonhole Principle, Some Elegant Applications of the Pigeonhole Principle **Permutations and Combinations** (TB1: 407-415) Introduction, Permutations, Combinations **Binomial Coefficients and Identities** (TB1: 415-423) The Binomial Theorem, Pascal's Identity and Triangle, Other **Identities Involving Binomial Coefficients** Generalized Permutations and Combinations (TB1: 423-434) Introduction, Permutations with Repetition, Combinations with Repetition. Permutations with Indistinguishable Objects. Distributing Objects into Boxes Generating Permutations and Combinations (TB1: 434-Introduction, Generating Permutations, Generating Combinations **Unit-5: Algebraic Structures** Algebraic Systems: Examples and General Properties(TB3: 270-281) Definition and Examples, Some Simple Algebraic Systems and General Properties Semi groups and Monoids (TB3: 282- 294) Definition and Examples, Homomorphism of Semigroups and Monoids, Sub Semigroups and Sub monoids **Groups** (TB3: 319-342) 10 Definitions and Examples, Subgroups and Homomorphisms, Cosets and Lagrange's Theorem, Normal Subgroups, Algebraic Systems with Two Binary Operations Lattices as Partially Ordered sets (TB3:379-397) Definition and Examples, Some Properties of Lattices, Lattices as Algebraic Systems, Sublattices, Direct Product and Homomorphism, Special Lattices

Text(T) / Reference(R) Books:

T1	Discrete Mathematics and Its Applications, Kenneth H Rosen, 7th												
	edition, MHP, 2012.												
T2	Discrete Mathematics with Applications, Susanna S Epp, 4th												
	Edition, CENGAGE												
Т3	Discrete Mathematical Structures with Applications to Computer												
	Science, J P Tremblay, R Manohar, TMH, 1997.												
R1	Discrete Mathematics, Seymour Lipschutz, Marc Lars Lipson,												
	SCHAUM's outlines.												
R2	Discrete Mathematical Structures, U S Gupta, Pearson												
R2	Discrete Mathematical Structures, U S Gupta, Pearson Publications.												
R2	1												

Course	Course Outcomes: On completion of this course, students can								
CO1	Distinguish between Statement Logic and Predicate Logic.								
CO2	Apply mathematical proving techniques in order to solve								
	recurrences and elementary algebra problems.								
CO3	Illustrate by examples terminology, operations and mathematical								
	models using theories of sets, relations and functions.								
CO4	Apply permutations & Combinations in problem solving								
CO5	Explain basic properties of algebraic structures								

Course Outcomes to Program Outcomes Mapping: (1: Low, 2:														
Medium, 3: High)														
	PO											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	-	-	-	-	-	-	-	-	-	-	2	-
CO2	2	3	-	-		-	-	-	-	-	-	-	2	-
CO3	2	3	-	-		-	-	-	-	-	-	-	2	-
CO4	2	3	-	-		-	-	-	-	-	-	-	2	-
CO5	2	3	-	-	-	-	ı	1	-	-	1	-	2	-
Course	2	3	-	-	-	-	-	-	-	-	-	-	2	-

Subject Code	DA	TA STRUCTURES			
Total Number of Lecture 50	Subject Code	18CTCTT3050	IA Marks	30	
Total Number of Lecture Hours Credits – 03 Unit -1: Basic concepts (TB1:001-045) Algorithm Specification – Introduction, Recursive Algorithms, Data Abstraction, Performance Analysis – Space Complexity, Time Complexity, Asymptotic Notation, Comparing Time Complexities, Performance Measurement Divide and Conquer Technique (TB2:65-97) Maximum-subarray problem, Strassen's algorithm for matrix multiplication, Solving recurrence relations: Substitution method, recursion-tree method, master method Searching and Sorting (TB1:317-336, TB1:408-423) Searching – Introduction, Sequential Search, Binary Search, Sorting-Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Optimal Sorting Time Unit-2: Abstract Data Types (TB1:47-70) Abstract Data Types (TB1:47-70) Abstract Data Type, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type, The Queue Abstract Data Type, Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations	Number of Lecture	2(L)	Exam	70	
Hours S0 Hours U3	Hours/Week	3(L)	Marks	70	
Hours Credits - 03	Total Number of Lecture	50	Exam	0.2	
Unit -1: Basic concepts (TB1:001-045) Algorithm Specification – Introduction, Recursive Algorithms, Data Abstraction, Performance Analysis – Space Complexity, Time Complexity, Asymptotic Notation, Comparing Time Complexities, Performance Measurement Divide and Conquer Technique (TB2:65-97) Maximum-subarray problem, Strassen's algorithm for matrix multiplication, Solving recurrence relations: Substitution method, recursion-tree method, master method Searching and Sorting (TB1:317-336, TB1:408-423) Searching – Introduction, Sequential Search, Binary Search, Sorting-Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Optimal Sorting Time Unit-2: Abstract Data Types (TB1:47-70) Abstract Data Types (TB1:47-70) Abstract Data Type, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations	Hours		Hours	03	
Basic concepts (TB1:001-045) Algorithm Specification – Introduction, Recursive Algorithms, Data Abstraction, Performance Analysis – Space Complexity, Time Complexity, Asymptotic Notation, Comparing Time Complexities, Performance Measurement Divide and Conquer Technique (TB2:65-97) Maximum-subarray problem, Strassen's algorithm for matrix multiplication, Solving recurrence relations: Substitution method, recursion-tree method, master method Searching and Sorting (TB1:317-336, TB1:408-423) Searching – Introduction, Sequential Search, Binary Search, Sorting-Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Optimal Sorting Time Unit-2: Abstract Data Types (TB1:47-70) Abstract Data Type, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations		Credits – 03			
Algorithm Specification – Introduction, Recursive Algorithms, Data Abstraction, Performance Analysis – Space Complexity, Time Complexity, Asymptotic Notation, Comparing Time Complexities, Performance Measurement Divide and Conquer Technique (TB2:65-97) Maximum-subarray problem, Strassen's algorithm for matrix multiplication, Solving recurrence relations: Substitution method, recursion-tree method, master method Searching and Sorting (TB1:317-336, TB1:408-423) Searching – Introduction, Sequential Search, Binary Search, Sorting-Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Optimal Sorting Time Unit-2: Abstract Data Types (TB1:47-70) Abstract Data Type, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations	Unit -1:			Hours	
Data Abstraction, Performance Analysis – Space Complexity, Time Complexity, Asymptotic Notation, Comparing Time Complexities, Performance Measurement Divide and Conquer Technique (TB2:65-97) Maximum-subarray problem, Strassen's algorithm for matrix multiplication, Solving recurrence relations: Substitution method, recursion-tree method, master method Searching and Sorting (TB1:317-336, TB1:408-423) Searching – Introduction, Sequential Search, Binary Search, Sorting-Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Optimal Sorting Time Unit-2: Abstract Data Types (TB1:47-70) Abstract Data Types, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations	Basic concepts (TB1:001-0	45)			
Time Complexity, Asymptotic Notation, Comparing Time Complexities, Performance Measurement Divide and Conquer Technique (TB2:65-97) Maximum-subarray problem, Strassen's algorithm for matrix multiplication, Solving recurrence relations: Substitution method, recursion-tree method, master method Searching and Sorting (TB1:317-336, TB1:408-423) Searching — Introduction, Sequential Search, Binary Search, Sorting-Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Optimal Sorting Time Unit-2: Abstract Data Types (TB1:47-70) Abstract Data Type, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations					
Complexities, Performance Measurement Divide and Conquer Technique (TB2:65-97) Maximum-subarray problem, Strassen's algorithm for matrix multiplication, Solving recurrence relations: Substitution method, recursion-tree method, master method Searching and Sorting (TB1:317-336, TB1:408-423) Searching – Introduction, Sequential Search, Binary Search, Sorting-Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Optimal Sorting Time Unit-2: Abstract Data Types (TB1:47-70) Abstract Data Type, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations					
Divide and Conquer Technique (TB2:65-97) Maximum-subarray problem, Strassen's algorithm for matrix multiplication, Solving recurrence relations: Substitution method, recursion-tree method, master method Searching and Sorting (TB1:317-336, TB1:408-423) Searching – Introduction, Sequential Search, Binary Search, Sorting-Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Optimal Sorting Time Unit-2: Abstract Data Types (TB1:47-70) Abstract Data Type, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations			ng Time		
Maximum-subarray problem, Strassen's algorithm for matrix multiplication, Solving recurrence relations: Substitution method, recursion-tree method, master method Searching and Sorting (TB1:317-336, TB1:408-423) Searching — Introduction, Sequential Search, Binary Search, Sorting-Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Optimal Sorting Time Unit-2: Abstract Data Types (TB1:47-70) Abstract Data Types, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations					
Maximum-subarray problem, Strassen's algorithm for matrix multiplication, Solving recurrence relations: Substitution method, recursion-tree method, master method Searching and Sorting (TB1:317-336, TB1:408-423) Searching – Introduction, Sequential Search, Binary Search, Sorting-Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Optimal Sorting Time Unit-2: Abstract Data Types (TB1:47-70) Abstract Data Type, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations	_	-		12	
method, recursion-tree method, master method Searching and Sorting (TB1:317-336, TB1:408-423) Searching — Introduction, Sequential Search, Binary Search, Sorting-Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Optimal Sorting Time Unit-2: Abstract Data Types (TB1:47-70) Abstract Data Type, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations				12	
Searching and Sorting (TB1:317-336, TB1:408-423) Searching – Introduction, Sequential Search, Binary Search, Sorting-Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Optimal Sorting Time Unit-2: Abstract Data Types (TB1:47-70) Abstract Data Type, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations			ostitution		
Searching – Introduction, Sequential Search, Binary Search, Sorting-Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Optimal Sorting Time Unit-2: Abstract Data Types (TB1:47-70) Abstract Data Type, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations	l '				
Sorting-Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Optimal Sorting Time Unit-2: Abstract Data Types (TB1:47-70) Abstract Data Type, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations	0 .				
Merge Sort, Optimal Sorting Time Unit-2: Abstract Data Types (TB1:47-70) Abstract Data Type, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations					
Unit-2: Abstract Data Types (TB1:47-70) Abstract Data Types, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations	_		ick Sort,		
Abstract Data Types (TB1:47-70) Abstract Data Types, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations		g Time			
Abstract Data Type, The Polynomial ADT, The Sparse Matrix ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations					
ADT, Sparse Matrix Addition and Multiplication. Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations					
Stacks and Queues (TB1:099-109) The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations			e Matrix		
The Stack Abstract Data Type, The Queue Abstract Data Type, Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations	_	_			
Circular Queue Abstract Data Type Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations	- , , , , , , , , , , , , , , , , , , ,				
Stack Applications (TB1:116-126) Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations	-		ita Type,		
Introduction, Evaluating Postfix Expressions, Infix to Postfix, Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations	_				
Multiple Stacks and Queues Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations			Dogtfiv		
Unit-3: Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations			Postiix,		
Singly Linked Lists (TB1:138-149) ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations)			
ADT, Operations, Dynamically Linked Stacks and Queues Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations		120 140)	1		
Polynomials (TB1:150-155) Representing as SLL, Addition, multiplication and Erase operations					
Representing as SLL, Addition, multiplication and Erase operations		•	eues	10	
operations			d Erosa	10	
		adition, munipheation an	u Erase		
	_	·179 TR1·162-164)			

ADT, operations	
Unit-4:	
Trees (TB1: 186-190)	
Introduction Terminology, Representation of Trees	
Binary Trees (TB1: 191-212)	
ADT, Properties, Representations, Traversals, Additional	
Operations, Threaded Binary Trees	
Binary Search Trees (TB1: 227-232)	10
Introduction, Search, Insert and Delete operations, Height of	
BST.	
Heaps (TB1: 218-226)	
The Heap Abstract Data Type, Priority Queues, Insertion into a	
max heap, Deletion from a max heap. Heap sort.	
Unit-5:	
Search Trees (TB1:528-617)	
AVL Trees, 2 – 3 Trees, 2 – 3 – 4 Trees, Red – Black Trees, B-	08
Trees and B+ Trees and their operations: search, insert and	υδ
delete	

Text	(T) / Reference(R) Books:
T1	Fundamentals of Data Structures in C, Second Edition by Ellis
	Horowitz, Sartaj Sahni, Anderson – Freed, Universities Press.
T2	Interdiction to Algorithms, Thomas H Coremen, Charles E
	Leiserson, Clifford Stein, Third Edition, MIT Press/McGraw-Hill
R1	Algorithms, Data Structures, and Problem Solving with C++,
	Illustrated Edition by Mark Allen Weiss, Addison-Wesley
	Publishing Company
R2	How to Solve it by Computer, 2 nd Impression by R. G. Dromey,
	Pearson Education.
W1	https://www.coursera.org/specializations/data-structures-
	<u>algorithms</u>
W2	https://www.edx.org/course/foundations-of-data-structures-2
W3	https://swayam.gov.in/course/1407-programming-and-data-
	<u>structures</u>

Cours	se Outcomes: On completion of this course, students can
CO1	Analyze algorithms' time and space complexity and justify the
	correctness.

CO2	Implement Stack and Queue ADT.
CO3	Implement Linked List ADT.
CO4	Implement Binary Tree ADT and traversal algorithms.
CO5	Implement Graph ADT and BFS and DFS traversal algorithms.

Course	Out	tcon	ies 1	to P	rog	ram	Ou	tcon	ies	Mapı	oing:	(1:	Low,	2:
Medium	, 3: I	High)											
							РО						PS	O
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	-	-	-	-	-	-	-	-	-	-	1	-
CO2	2	3	-	-	-	-	-	-	-	-	-	-	-	2
CO3	2	3	-	-	-	-	-	-	-	-	-	-	-	2
CO4	2	3	-	-	-	-	-	-	-	-	-	-	-	2
CO5	2	3	-	-	-	-	-	-	-	-	-	-	-	2
Course	2	3	-	-	-	-	-	-	-	-	-	-	1	2

ANALOG &	DIGITAL ELECTRO	ONICS LAB	
Subject Code	18CTECL3060	IA Marks	50
Number of Lecture Hours/Week	3(P)	Exam Marks	50
Total Number of Lecture Hours	36	Exam Hours	03

List of Experiments

(Minimum 12 Experiments to be done)

PART-A: (Experiments to be done by using Hardware Components)

Exercise 1

PN Junction Diode V-I Characteristics

Exercise 2

Zener Diode Characteristics

Exercise 3

Transistor Biasing

Exercise 4

BJT Input and Output Characteristics (CE Configuration)

Exercise 5

FET Drain and Transfer Characteristics (CS Configuration)

Exercise 6

BJT-CE Amplifier

Exercise 7

FET-CS Amplifier

Exercise 8

 $OP\ AMP\ Applications-Adder,\ Subtractor,\ Comparator\ Circuits$

PART-B: (Experiments to be done by using MATLAB)

Exercise 9

Represent a signal using MATLAB and perform following

- i) Identify even and odd symmetries in a signal
- ii) Perform the amplitude scaling, time scaling and time shifting operations

Exercise 10

Determine the Fourier transformation of a signal

Exercise 11

State the sampling theorem and verify it.

Exercise 12

Determine the Laplace transformation of a signal

Exercise 13

Determine the \boldsymbol{Z} - transformation of a signal

Exercise 14

Perform the convolution of two continuous signals

Cours	Course Outcomes: On completion of this course, students can						
CO1	Understand the characteristics of semiconductor devices						
CO2	Understand the nature of transistor and FET amplifier						
CO3	Apply sampling theorem to convert continuous-time signals to discrete-time signal and reconstruct back.						
CO4	Analyze the continuous-time signals and systems using Fourier						
	and Laplace transforms						

Course	Out	tcom	ies 1	to P	rog	ram	Ou	tcon	ies	Mapp	ping:	(1:	Low,	2:
Medium	, 3: I	High)											
							РО						PS	O
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	1	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	3	-	-	-	-	-	-	-	-	-	2	-
CO3	2	1	3	-	-	-	-	-	-	-	-	-	1	-
CO4	3	3	3	-	-	-	-	-	-	-	-	-	-	-
Course	3	2	3	-	-	-	-	-	1	-	-	-	1	-

II	Workshop Lab		
Subject Code	18CTCTL3070	IA Marks	50
Number of Tutorial	03(P)	Exam Marks	50
Hours/Week			
Total Number of Practice	36	Exam Hours	03
Hours			

LIST OF EXPERIMENTS

Exercise1

Study of basic scilab commands

Exercise2

Matrix constructors and operations

Exercise3

Matrix bitwise, relational & logical operations

Exercise4

Control structures (If-Else, If-elseif -else, Select)

Exercise5

Control structures (for, while, break and continue)

Exercise6

Graphics - 2d plots

Exercise7

Computer application program

Exercise8

Civil application program

Exercise9

Electronics application program

Exercise10

Electronics application program

ı						of this course, students can		
	CO1	Understand	the	need	for	simulation/implementation	for	the
		verification (of ma	athema	tical	functions.		

CO2	Understand the main features of the SCILAB program
	development environment to enable their usage in the higher
	learning.
CO3	Understand control flow of the program.
CO4	Implement simple mathematical functions/equations in numerical
	ti t 1 COLLAD
	computing environment such as SCILAB.
CO5	Interpret and visualize simple mathematical functions and

Course	Course Outcomes to Program Outcomes Mapping: (1: L								Low,	2:				
Medium	, 3: I	High)											
		PO								PS	SO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	-	-	-	-	-	-	-	-	-	-	2	-
CO2	2	3	-	-	-	-	-	-	-	-	-	-	2	-
CO3	2	3	-	-	-	-	-	-	-	-	-	-	2	-
CO4	2	3	-	-	-	-	-	-	-	-	-	-	2	-
CO5	2	3	-	-	-	-	-	-	-	-	-	-	2	-
Course	2	3	-	-	-	-	-	-	-	-	-	-	2	-

DATA STRUCTURES LAB							
Subject Code	18CTCTL3080	IA Marks	50				
Number of Tutorial	3(P)	Exam Marks	50				
Hours/Week							
Total Number of Practice	04	Exam Hours	03				
Hours							

List of Experiments

Exercise 1 (Sorting)

Bubble Sort

Selection Sort

Insertion Sort

Exercise 2 (Sorting)

Quick Sort

Merge Sort

Exercise 3 (Abstract Data Types)

Stacks and Queue using arrays

Stacks and Queue using Linked Lists

Exercise 4 (Applications of Stack)

Infix to Postfix Conversion

Postfix Expression Evolution

Exercise 5 (Linked List Applications)

Polynomial Addition

Polynomial Multiplication

Exercise 6

Doubly Linked List

Circular Linked List

Exercise 7 (Search Trees)

Binary Search Trees

Exercise 8 (Search Trees)

Binary Heap, Heap Sort

Exercise 9 (Search Trees)

AVL Trees

Exercise 10 (Search Trees)

Red-Black Trees

Exercise 11 (Search Trees)

B- Trees

Exercise 12 (Search Trees)

B+ Trees

Cours	Course Outcomes: On completion of this course, students can						
CO1	analyze time and space complexity and justify them.						
CO2	mplementStacks and Queues and demonstrate applications of						
	stacks.						
CO3	Implement different types of lists and operations.						
CO4	Implement variety of search trees and traversal algorithms.						
CO5	Implement various sorting algorithms.						

Course	Course Outcomes to Program Outcomes Mapping: (1: Low, 2:													
Medium	Medium, 3: High)													
		PO								PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	-	-	-	-	-	-	-	-	-	-	-	2
CO2	2	3	-	-	-	-	-	-	-	-	-	-	-	2
CO3	2	3	-	-	-	-	-	-	-	-	-	-	-	2
CO4	2	3	-	-	-	-	-	-	-	-	-	-	-	2
CO5	2	3	-	-	-	-	-	-	-	-	-	-	-	2
Course	2	3	-	-	-	-	-	-	-	-	-	-	-	2

IV SEMESTER (II-II)

CTCNIA	r c o caracterate			
	LS & SYSTEMS			
Subject Code	18CTECT4010	IA Marks	30	
Number of Lecture	03	Exam Marks	70	
Hours/Week				
Total Number of Lecture	50	Exam Hours	03	
Hours				
			lits —	
		03		
Unit -1			Hours	
periodicity, absolute integrabili character. Some special signals unit impulse, the sinusoid, the special time-limited signals; signals, continuous and discre- properties: linearity: additivity invariance, causality, stability, r	of importance: the ne complex export continuous and of ete amplitude signifity and homoge	nd stochastic unit step, the nential, some discrete time nals. System neity, shift-	12	
Unit -2				
Behavior of continuous and discrete-time LTI systems: Impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. State-space Representation of systems. State-Space Analysis, Multi-input, multi-output representation. State Transition Matrix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response.				
Unit – 3				
Fourier Transformation: Fourier series representation of Symmetries, Calculation of Transform, convolution/multipl frequency domain, magnitude domain duality. The Discrete-T and the Discrete Fourier Transfo Unit – 4	Fourier Coefficie icate ion and their and phase respo ime Fourier Trans	ents. Fourier effect in the onse, Fourier form (DTFT)	8	

Laplace Transforms:	
Review of the Laplace Transform for continuous time signals	
and systems, system functions, poles and zeros of system	
functions and signals, Laplace domain analysis, solution to	
differential equations and system behavior.	10
Z-Transforms:	
The z-Transform for discrete time signals and systems, system	
functions, poles and zeros of systems and sequences, z-domain	
analysis.	
Unit – 5	
Sampling and Reconstruction:	
The Sampling Theorem and its implications. Spectra of sampled	
signals. Reconstruction: ideal interpolator, zero-order hold, first-	
order hold. Aliasing and its effects. Relation between continuous	8
and discrete time systems. Introduction to the applications of	
signal and system theory: modulation for communication,	
filtering, feedback control systems.	

Text	(T) / Reference(R) Books:					
T1	Signals and Systems, 2nd Edn, A.V. Oppenheim, A.S. Willsky and					
	S.H. Nawab, PHI.					
T2	Signals, Systems & Communications, B.P. Lathi, BS Publications.					
T3	Signals & Systems, 2nd Edition. Simon Haykin and Van Veen,					
	Wiley.					
R1	Principles of Linear Systems and Signals, BP Lathi, Oxford					
	University Press.					
R2	Fundamentals of Signals and Systems, International Edition,					
	Michel J. Robert, MGH.					
R3	Digital Signal Processing: Principles, Algorithms, and					
	Applications, J. G. Proakis and D. G. Manolakis, Pearson.					
R4	Signals and Systems, T K Rawat , Oxford University press.					
W	https://www.coursera.org/courses?query=signals%20and%20syste					
1	<u>ms</u>					
W	https://onlinecourses.nptel.ac.in/noc18_ee02/preview					
2						

Cours	Course Outcomes: On completion of this course, students can					
CO1	Able to characterize the signals and systems.					
CO2	Able to understand the Behavior of continuous and discrete-time LTI systems					
CO3	Able to analyze the continuous-time signals and continuous-time systems using Fourier series, Fourier transform and Laplace transform.					
CO4	Able to apply z-transform to analyze discrete-time signals and systems.					
CO5	Able to apply sampling theorem to convert continuous-time signals to discrete-time signal and reconstruct back.					

Course	Out	tcon	ies 1	to P	rog	ram	Ou	tcon	ies	Mapı	oing:	(1:	Low,	2:
Medium	, 3: I	High)											
		PO PSO									Ю			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	-	3
CO2	3	-	-	-	-	-	-	-	-	-	-	-	-	3
CO3	3	-	-	-	-	-	-	-	-	-	-	-	-	3
CO4	3	-	-	-	-	-	-	-	-	-	-	-	-	3
CO5	3	-	-	-	-	-	-	-		-	-	-	-	3
Course	3	-	-	-	-	-	-	-	-	-	-	-	-	3

ENGIN	EERING MECHANI	CS			
Subject Code	18CMCET4020	IA Marks	30		
Number of Lecture	03	Exam	70		
Hours/Week		Marks			
Total Number of Lecture	50	Exam	03		
House	Credits – 03	House			
Unit -1			Hours		
Systems of Forces: Coplanar Concurrent Forces – Components in Space – Resultant – Moment of Force and its Application – Couples and Resultant of Force Systems. Friction: Introduction, limiting friction and impending motion, coulomb's laws of dry friction, coefficient of friction, cone of friction Unit -2 Equilibrium of Systems of Forces: Free Body Diagrams, Equations of Equilibrium of Coplanar Systems, Spatial Systems for concurrent forces. LamisTheorm, Graphical method for the equilibrium of coplanar forces, Converse of the law of Triangle of forces, converse of the law of polygon of forces condition of equilibrium, analysis of plane trusses.					
Unit – 3					
Centroid and Centre of Gravity covering Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook.					
Unit – 4					
Kinematics: Rectilinear and Curvilinear motions – Velocity and Acceleration – Motion of Rigid Body – Types and their Analysis in Planar Motion. Kinetics:					

Analysis as a Particle and Analysis as a Rigid Body in	
Translation - Central Force Motion - Equations of Plane Motion	
- Fixed Axis Rotation - Rolling Bodies.	
Unit-5	
Work - Energy Method:	
Equations for Translation, Work-Energy Applications to	10
Particle Motion, Connected System-Fixed Axis Rotation and	10
Plane Motion. Impulse momentum method.	

Text	(T) / Reference(R) Books:
T1	Engg. Mechanics 4th Edn, S.Timoshenko&D.H.Young, Mc Graw
	Hill publications.
T2	Engineering Mechanics-Statics and Dynamics, A Nelson, Tata
	McGraw Hill Education Private Ltd.
R1	Engineering Mechanics statics and dynamics, 11th Edn,
	R.C.Hibbeler, Pearson.
R2	Engineering Mechanics, statics, 6th Edn, J.L.Meriam, Wiley
	India Pvt Ltd.
R3	Engineering Mechanics, statics and dynamics, I.H.Shames,
	Pearson
R4	Mechanics For Engineers, statics, 5th Edn,
	F.P.Beer&E.R.Johnston, Mc Graw Hill
R5	Mechanics For Engineers, dynamics, 5th Edn,
	F.P.Beer&E.R.Johnston, Mc Graw Hill
R6	Theory & Problems of engineering mechanics, statics &
	dynamics, 5th Edn, E.W.Nelson, C.L.Best& W.G. McLean, Mc
	Graw Hill.
R7	Singer's Engineering Mechanics: Statics and Dynamics, K. Vijay
	Kumar Reddy, J. Suresh Kumar, Bs Publications.
R8	Engineering Mechanics, Fedinand . L. Singer, Harper, Collins
W1	https://swayam.gov.in/courses/5241-engineering-mechanics
W2	https://onlinecourses.nptel.ac.in/noc16_ph02/preview

Cours	Course Outcomes: On completion of this course, students can				
CO1	Able to Resolve the forces into components, moment of force and				
	its applications				
CO2	Construct free body diagrams and develop appropriate equilibrium				
	equations.				
CO3	Determine centroid and moment of inertia for composite areas.				

CO4	Determine the kinematic relations of particles & rigid bodies.
CO5	Apply equations of motion to particle and rigid body using the
	principle of energy and momentum methods.

Course	Out	tcon	ies 1	to P	rog	ram	Ou	tcon	nes	Mapı	oing:	(1:	Low,	2:
Medium	, 3: 1	High)											
							РО						PS	SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-	2	-
CO3	2	2	-	-	-	-	-	-	-	-	-	-	2	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-	1	-
CO5	3	2	-	-	-	-	-	-	-	-	-	-	1	-
Course	3	2	-	-	-	-	-	-	-	-	-	-	3	-

COMPU	TER ORGANIZATI	ON	
Subject Code	18CTCTT4030	IA Marks	30
Number of Lecture	03	Exam	70
Hours/Week		Marks	
Total Number of Lecture	50	Exam	03
House		Cre	dits: 03
Unit -1			Hours
Functional Units: Input Unit, Memory Unit, A Control Unit, Number Representations: Integers (Signed and Unsign Extension, Overflow in In Numbers, Characters, Integer Addition and Subtor Ripple-carry adder, Carry-Lo Integer Multiplication: Array Multiplier, Shift-and- Addition of Summands, Integer Division: Restoring Floating Point Arithmetic: bits and Truncation, Implement	ed), Addition and sub nteger Arithmetic, F raction: pokahead Adder, Add, Booth Multiplie Division, Non-Restor Representation, Oper	traction, Sign Floating-point r, Carry-Save ing Division, ations, Guard	11
Unit -2			
Basic Concepts: Memory Locations and Addresses, Byte Addressability, Big- Endian and Little-Endian Assignments, Word Alignment, Memory Operations, Instruction Sets: Notations for Data Transfer, RISC and CISC Instruction Sets, Introduction to RISC Instructions, Logic Instructions, Shift and Rotate, Multiplication and Division, dealing with 32-bit Immediate Values, CISC Instruction Sets, RISC and CISC Styles, Instruction Execution: Sequencing, Branching, Addressing Modes: Accessing Variables, Indirection and Pointers, Indexing and Arrays, Additional Addressing modes, Condition Codes.			

Unit – 3	
Basic Concepts:	
Main Hardware Components, Data Processing Hardware,	
Instruction Execution:	
Load Instructions, Arithmetic and Logic Instructions, Store	
Instructions,	
Hardware Components:	00
Register File, ALU, Data Path, Instruction Fetch Section,	08
Instruction Fetch and Execution:	
ADD, LOAD, STORE, BRANCH and Subroutine call	
instructions; instruction encoding, Wait for Memory,	
Control Unit Design:	
Control Signals, Hardwired Control, Microprogrammed Control	
Unit – 4	
Basic Concepts:	
Basics, Cache Memory, Virtual Memory, Block Transfers,	
Memory Organization:	
Internal Organization of Memory Chips, Static RAMs, Dynamic	
RAMs, Synchronous DRAMs, Structure of Larger Memories,	
Read-Only Memories, Memory Hierarchies, Cache Memories:	
Locality of Reference, Cache Hit and Miss, Mapping	
Techniques: Direct, Associate, Set-associate; Replacement	
Algorithms, Hit Rate and Miss Penalty, caches on the processor	10
Chip, Enhancing Cache Performance,	
Peripherals:	
Accessing I/O Device, I/O Interface, Program-controlled I/O,	
Interrupts:	
Concept, Enabling and Disabling, Handling Multiple Devices,	
Controlling I/O Devices (Interrupt-driven I/O), Processor	
Control Registers,	
Direct Memory Access: DMA Controller and registers	
Unit-5	
Pipeline:	
Ideal Case, Organization, Issues,	
Data Dependencies:	
Concept, Operand Forwarding, Handling Data Dependencies,	11
Effect of Delays:	
Memory Delays, Delays due to Unconditional and Conditional	
Branches, Branch Delay Slot, Static and Dynamic Prediction,	

Branch Target Buffer for Dynamic Prediction, Resource Limitation,

Performance Evaluation:

Effects of Stalls and Penalties, Number of Pipeline Stages,

Super Scalar Operation:

Concept, Branches and Data Dependencies, Out-of-order Execution, Execution Completion, Dispatch Operation,

Parallel Processing:

Hardware Multithreading, Vector Processing, Graphics Processing Units (GPUs), Shared Memory Multiprocessors,

Cache Coherence:

Write-Through protocol, Write Back Protocol, Snoopy Caches, Directory Based Cache Coherence, Message Passing

Text	(T) / Reference(R) Books:					
T1	Computer Organization and Embedded Systems, 6 th Edition, Carl					
	Hamacher, Zvonko Vranesic, Safwat Zaky, Naraig Manjikian,					
	McGraw-Hill Publications.					
R1	Computer Organization and Design: The Hardware/Software					
	Interface, 5th Edition, David A. Patterson, John L. Hennessy,					
	Morgan Kauffman Publishers (Elsevier).					
W1	https://swayam.gov.in/course/3747-computer-organization					
W2	https://online.stanford.edu/courses/cs107-computer-organization-					
	<u>and-systems</u>					

Cours	Course Outcomes: On completion of this course, students can				
CO1	Get familiar with Operating System fundamentals.				
CO2	Attain knowledge on processes, threads and the communication between them.				
CO3	Understand the mechanism for executing jobs by the underlying processor.				
CO4	Comprehend the intricacies of sharing limited available resources among the processes and threads.				
CO5	Gain insights into the mechanisms for managing memory, disks and I/O devices.				

Course	Course Outcomes to Program Outcomes Mapping: (1: Low, 2:													
Medium	, 3: I	High)											
							РО						PS	O
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	-	-	-	-	-	-	-	-	-	2	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-	2	-
CO3	3	3	3	-	-	-	-	-	-	-	-	-	2	-
CO4	3	3	3	-	-	-	-	-	-	-	-	-	2	-
CO5	3	3	3	-	-	-	-	-	-	-	-	-	2	-
Course	3	3	3	-	-	1	-	-	-	-	-	-	2	-

	S DESIGN AND AN		
Subject Code	18CTCTT4040	IA Marks	30
Number of Lecture	03	Exam	70
Hours/Week		Marks	
Total Number of Lecture	50	Exam	03
	Credits: 03		
Unit -1			Hours
Elements of Dynamic Progr Optimal sub structure, Reconstructing an optimal sof Example Problems: Longest common Subsequer String Editing, 0/1 Knap Salesperson Problem, Elements of Greedy Strateg Concept, Greedy – Choice Greedy vs Dynamic programs Example Problems: Huffman Vertex Splitting, Job Sequence	overlapping sub lution, Memorization. nce, Optimal Binary : Sack Problem , Th y: property, Optimal suming, n codes, Knap Sack Pro	e Traveling ub structure,	11
Back Tracking: Concept, State Space, Solution Space and Solution Space, ill Sum of Subsets Problems, Ex 8-Queens Problem, Su Coloring, Hamiltonian Cycles Branch and Bound: Least Cost (LC) Search, Abstraction for LC-Search, Both LC-Branch-and -Bound, Example Problems:	ustration using 4-Qued cample Problems: m of Sub se , 0/1 Knap Sack Probl , 15-Puzzle Examp ounding, FIFO Branch	ens Problem, ts, Graph em, le, Control -and-Bound,	09
0/1 Knap Sack Problem, Trav	reling Sales Person Pro	oblem	
Unit – 3		1	
Elementary Graph Algorith Concepts, Representation of Depth First Search, Topolo Components, Biconnected Co Minimum Spanning Trees:	f Graphs, Breadth F ogical sort, Strongly	Connected	11

Growing Minimum Spanning Tree, Kruskal's Algorithm, Prim's					
Algorithms, Single Source Shortest Paths:					
Shortest Path, Edge Weights, Variants of Shortest Path					
Problems, Optimal Sub Structure of Shortest Path, Negative					
Edge Weights, Cycles, Representing Shortest Paths, Relaxation,					
Properties of Shortest path and Relaxation,					
All-Pairs Shortest Paths:					
Concept, Shortest Path and Matrix Multiplication,					
Shortest Path Algorithms:					
Bellman Ford Algorithm, Dijkstra`s Algorithm, Floyd- Warshall					
Algorithm.					
Unit – 4					
Computability of Algorithms:					
Tractable and Intractable, Computability Classes – P, NP, NPC,					
NPH, showing problems to be NPC, Reductions,					
Tractable Problems:					
Supporting arguments, Abstract Problems, Encodings,					
Polynomial Time Verification:					
Hamiltonian Cycles, Verification Algorithms, Complexity class					
NP,	10				
NP Completeness:	10				
Reducibility, NP Completeness, Circuit Satisfiability, Circuit					
Satisfiability,					
NP Completeness Proof:					
Formula Satisfiability, 3CNF Satisfiability,					
NP-Complete Problems:					
Clique, Vertex-cover, Hamiltonian Cycle, Traveling-Salesman					
Problem, Subset Sum Problem					
Unit – 5					
Approximation Algorithms:					
Roles and functions, Components, Structure, Operations, Load					
Balancing Problem, Center Selection Problem, Set Cover,					
Greedy Heuristics,					
Randomized Algorithms:	09				
Contention Resolution, Global Minimum Cut, Random					
Variables and Their Expectations, A Randomized					
Approximation Algorithm for MAX 3-SAT, Randomized Divide					
and Conquer: Median Finding and Quick Sort.					

Text	(T) / Reference(R) Books:				
T1	Interdiction to Algorithms, Third Edition, Thomas H				
	Coremen, Charles E. Leiserson, Clifford Stein, MIT Press/McGraw-				
	Hill.				
T2	Computer Algorithms, Ellis Horowitz, Sartaj Sahni, S Rajasekaran,				
	Computer Science Press				
T3	Algorithm Design, First Edition, JON Kleinberg, EVA Tardos,				
	Pearson Addison Wesley				
R1	Algorithm Design: Foundation, analysis, and Internet Examples,				
	First Edition, John Wiley & sons				
W1	https://www.coursera.org/specializations/algorithms				
W2	https://swayam.gov.in/course/4417-design-and-analysis-of-				
	algorithms				

Cours	se Outcomes: On completion of this course, students can
CO1	analyze worst-case running times of algorithms based on
	asymptotic analysis and justify the correctness of algorithms.
CO2	Describe the greedy paradigm and explain when an algorithmic
	design situation calls for it. For a given problem develop the
	greedy algorithms.
CO3	Describe the divide-and-conquer paradigm and explain when an
	algorithmic design
	situation calls for it. Synthesize divide-and-conquer algorithms.
	Derive and solve
	recurrence relation.
CO4	Describe the dynamic-programming paradigm and explain when
	an algorithmic design situation calls for it.
CO5	For a given problems of dynamic-programming an develop the
	dynamic programming algorithms and analyze it to determine its
	computational complexity. For a given model engineering
	problem model it is using graph and write the corresponding
	algorithm to solve the problems.

Course	Course Outcomes to Program Outcomes Mapping: (1: Low, 2:													
Medium, 3: High)														
	PO													O
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	-	-	-	-	-	-	-	-	-	-	1	2
CO2	2	3	-	-	-	-	-	-	-	-	-	-	1	2
CO3	2	3	-	-	-	-	-	-	-	-	-	-	1	2
CO4	2	3	-	-	-	-	-	-	-	-	-	-	1	2
CO5	2	3	-	-	-	-	-	-	-	-	-	-	1	2
Course	2	3	-	-	-	-	-	-	-	-	-	-	1	2

JAV	'A PROGRAMMING										
Subject Code	18CTCTT4050	IA Marks	30								
Number of Lecture	3(L)	Exam	70								
Hours/Week	3(L)	Marks	70								
Total Number of Lecture	50	Exam	03								
Hours		Hours									
	Credits – 03		I								
Unit -1: Introduction to OOP											
Introduction to Object Or	iented Programming, Princ	ciples of									
	s, Procedural languages V										
History and Evolution of	Java, Java Virtual Machi	ne, Java	08								
Features, Program Structur	e, Variables, Primitive Dat	a Types,									
Variables, Type Conversion	on and Casting, Operators,	Control									
Statements, Arrays, String.											
Unit -2 : Introducing Clas	ses, Methods and Inherita	nce									
Class Fundamentals, Decla	aring Objects, Reference V	ariables,									
Methods, Constructors, tl	nis keyword, Garbage Co	ollection,									
finalize() method.			10								
_	Constructors, usage of static	and final	10								
keywords, Command line a											
Inheritance basics, using		dynamic									
method dispatch, abstract c											
Unit – 3: Packages, Interf											
Packages, Access Protection											
Exception types, built in e			10								
	hrows, finally, chained ex-										
	ng console input and writing	g console									
output, Reading and Writin											
Unit – 4: Multi-Threading											
	ating a thread, Thread p										
-	hread Communication, co		10								
	faces, collection classes,	iterator,									
maps, comparators.	TD 1 1/1 T 1	ENZ.									
	I Programming with Java										
	vaFX Application Skeleton,										
	nage, Image View, Radio		12								
	mbo Box, Text Field, Scro	on Pane,									
JavaFx Menus, JavaFX Eve	ent Handling										

Text	(T) / Reference(R) Books:
T1	The complete Reference Java, 9th edition, Herbert Scheldt, TMH.
T2	Programming in JAVA, Sachin Malhotra, Saurabh Choudary, Oxford.
R1	JAVA Programming, K Rajkumar, Pearson
R2	Core JAVA, Black Book, Nageswara Rao, Wiley, Dream Tech
R3	Core JAVA for Beginners, Rashmi Kanta Das, Vikas.
R4	Object Oriented Programming Through Java, P. Radha Krishna,
	Universities Press.
W1	https://www.edx.org/learn/java
W2	https://onlineitguru.com/core-java-online-training-placement.html

Cours	se Outcomes: On completion of this course, students can
CO1	Design classes, interfaces and packages.
CO2	Demonstrate inheritance, polymorphism, encapsulation.
CO3	Demonstrate user defined exceptions.
CO4	Create Threads to parallelize operations.
CO5	Create rich user-interface applications using modern API JavaFX.

Course	se Outcomes to Program Outcomes Mapping: (1: 1													2:
Medium, 3: High)														
	PO													O
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	-	3	-	-	-	-	-	-	-	-	2
CO2	2	3	3	-	2	-	-	-	-	-	-	-	-	2
CO3	2	3	3	-	2	-	-	-	-	-	-	-	-	2
CO4	2	3	3	-	2	-	-	-	-	-	-	-	-	2
CO5	2	3	3	-	2	-	-	-	-	-	-	-	-	2
Course	2	3	3	-	2	-	-	-	-	-	-	-	-	2

COMPUTER O	COMPUTER ORGANIZATION LAB											
Subject Code	18CTCTL4060	IA Marks	15									
Number of Tutorial	03(P)	Exam	35									
Hours/Week	U3(F)	Marks	33									
Total Number of Practice Hours	48	Exam Hours	03									

Credits - 1.5

List of experiments

Exercise 1

- Write a Machine Language Program to perform Addition of two numbers.
- Write a Machine Language Program to perform Subtraction of two numbers.

Exercise 2

- a) Write a Machine Language Program to perform Addition of **n**
- b) Write a Machine Language Program to generate **n** numbers.

Exercise 3

- a) Write a Machine Language Program to generate **n** Even numbers.
- b) Write a Machine Language Program to generate **n** Odd numbers.

Exercise 4

- a) Write a Machine Language Program to move data from one block to another block.
- b) Write a Machine Language Program to mask 4 high-order bits.

Exercise 5

- a) Write a Machine Language Program to read data at location 4400 and unpack data into 07, 0E and store in 4401 & 4402.
- Write a Machine Language Program to Subtract an array of elements to get positive result

Exercise 6

- a) Write a Machine Language Program to Find largest element of an array.
- b) Write a Machine Language Program to Perform Linear Search operation.

Exercise 7

 a) Write a Machine Language Program to Find smallest element of an array. Write a Machine Language Program to Find largest value among two numbers.

Exercise 8

- a) Write a Machine Language Program to Find smallest value among two numbers.
- Write a Machine Language Program to Find factorial of given number.

Exercise 9

- Write a Machine Language Program to generate Fibonacci Series.
- b) Write a Machine Language Program to Convert a number from Hexadecimal to BCD.

Exercise 10

- a) Write a Machine Language Program to separate Even and Odd numbers.
- b) Write a Machine Language Program to find 1's Complement and 2's Complement of a number.

Exercise 11

- a) Write a Machine Language Program to perform addition of first n numbers.
- Write a Machine Language Program to perform Division of two 8-bit numbers.

Exercise 12

- a) Write a Machine Language Program to Convert ASCII to Decimal and vice versa.
- Write a Machine Language Program to Convert a number from Hexadecimal to Decimal.

Cours	se Outcomes: On completion of this course, students can
CO1	Get familiar with Operating System fundamentals.
CO2	Attain knowledge on processes, threads and the communication between them.
CO3	Understand the mechanism for executing jobs by the underlying processor.
CO4	Comprehend the intricacies of sharing limited available resources among the processes and threads.
CO5	Gain insights into the mechanisms for managing memory, disks and I/O devices.

Course	Course Outcomes to Program Outcomes Mapping: (1: Low, 2:													2:
Medium	Medium, 3: High)													
	PO													O
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	-	-	-	-	-	-	-	-	-	-	2
CO2	3	3	3	-	-	-	-	-	-	-	-	-	-	2
CO3	3	3	3	-	-	-	-	-	-	-	-	-	-	2
CO4	3	3	3	-	-	-	-	-	-	-	-	-	-	2
CO5	3	3	3	-	-	-	-	-	-	-	1	-	-	2
Course	3	3	3	-	-	-	-	-	-	-	-	-	-	2

ALGORITHMS DESIGN AND ANALYSIS LAB											
Subject Code	18CTCTL4070	IA Marks	50								
Number of Tutorial Hours/Week	03(P)	Exam Marks	50								
Total Number of Practice Hours	48	Exam Hours	03								

LIST OF EXPERIMENTS:

Exercise 1 (Dynamic Programming Technique)

- a) Longest common Subsequence
- b) Develop Optimal Binary search trees

Exercise 2 (Dynamic Programming Technique)

- a) 0/1 Knap Sack Problem,
- b) The Traveling Salesperson Problem.

Exercise 3 (Greedy Methods)

- a) Huffman codes
- b) Knap Sack Problems

Exercise 4 (Greedy Methods)

- a) Tree Vertex Splitting
- b) Job Sequencing with Dead Lines

Exercise 5 (Back Tracking Techniques)

- a) 8-Queens Problem
- b) Sum of Sub sets

Exercise 6 (Back Tracking Techniques)

- a) Graph Coloring.
- b) Hamiltonian Cycles

Exercise 7 (Back Tracking Techniques)

a) 0/1 Knap Sack Problem

Exercise 8 (Branch and Bound)

- a) 0/1 Knap Sack Problem
- b) Traveling Sales Person Problem

Exercise 9 (Graph Algorithms)

- a) Breadth First Search
- b) Depth First Search

Exercise 10 (Graph Algorithms)

- a) Kruskal's Algorithm
- b) Prim's Algorithms

Exercise 11 (Graph Algorithms)

- a) Bellman Ford Algorithm
- b) Dijkstra's Algorithm

Exercise 12 (Graph Algorithms)

a) Floyd- Warshall Algorithm.

Cours	ee Outcomes: On completion of this course, students can
CO1	For a given algorithms analyze worst-case running times of
	algorithms based on asymptotic analysis and justify the
	correctness of algorithms.
CO2	Describe the greedy paradigm and explain when an algorithmic
	design situation calls for it. For a given problem develop the
	greedy algorithms.
CO3	Describe the divide-and-conquer paradigm and explain when an
	algorithmic design situation calls for it. Synthesize divide-and-
	conquer algorithms. Derive and solve recurrence relation.
CO4	Describe the dynamic-programming paradigm and explain when
	an algorithmic design situation calls for it.
CO5	For a given problem of dynamic-programming an develop the
	dynamic programming algorithms and analyze it to determine its
	computational complexity.

Course	Course Outcomes to Program Outcomes Mapping: (1: Low, 2:													
Medium, 3: High)														
	PO													SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	-	-	-	-	-	-	-	-	-	-	-	2
CO2	2	3	-	-	-	-	-	-	-	-	-	-	-	2
CO3	2	3	-	-	-	-	-	-	-	-	-	-	-	2
CO4	2	3	-	-	-	-	-	-	-	-	-	-	-	2
CO5	2	3	-	-	-	-	-	-	-	-	-	-	-	2

Course	2	3	-	-	-	-	-	-	-	-	-	-	-	2	
--------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

JAVA PROGRAMMINGLAB									
Subject Code	18CTCTL4080	IA Marks	50						
Number of Tutorial Hours/Week	3(P)	Exam Marks	50						
Total Number of Practice Hours	36	Exam Hours	03						

List of experiments

Exercise 1 (Basics)

- Write a Java program to display default value of all primitive data type of Java.
- d) Write a Java Program to print the area of the Triangle
- e) Write a Java program to check whether the given number is even or odd.

Exercise 2 (Basics-Continued)

- a) Write a Java program to display the Fibonacci sequence
- b) Write a Java program that display the roots of a quadratic equation ax2+bx=0. Calculate the discriminate D and basing on value of D, describe the nature of root.
- c) Five Bikers Compete in a race such that they drive at a constant speed which may or may not be the same as the other. To qualify the race, the speed of a racer must be more than the average speed of all 5 racers. Take as input the speed of each racer and print back the speed of qualifying racers.

Exercise 3 (Operations, Expressions, Control-flow, Strings)

- a) Write a Java program to search for an element in a given list of elements using binary search.
- b) Write a Java program to sort given list of elements using bubble sort
- Write a Java program using StringBuffer to delete, remove character.

Exercise 4 (Class, Objects, Methods)

a) Write a Java program to implement class mechanism. – Create a class, methods and invoke them inside main method.

- b) Write a Java program to implement constructor.
- c) Write a Java program to implement constructor overloading.
- d) Write a Java program implement method overloading.

Exercise 5 (Inheritance)

- a) Write a Java program to implement Single Inheritance
- b) Write a Java program to implement multi-level Inheritance
- Write a Java program to find areas of different shapes using abstract class.

Exercise 6 (Inheritance - Continued)

- a) Write a Java program give example for "super" keyword.
- b) Write a Java program to implement Interface.
- c) Write a Java program that implements Runtime polymorphism

Exercise 7 (Exceptions)

- a) Write a Java program that describes exception handling mechanism
- Write a Java program for creation of Illustrating throw, throws and finally
- Write a Java program to illustrate sub class exception precedence over base class.
- d) Write a Java program for creation of User Defined Exception

Exercise 8 (Packages)

- a) Write a Java program to create a package named pl and implement ex1 class in it.
- Write a Java program to create a package "mypack" and import it in circle class.
- c) Write a Java program illustrate class path

Exercise 9 (I/O)

- a) Write a Java program to illustrate the concept of I/O Streams.
- b) Write a Java program that reads a file name from the user, and then displays information about whether the file exists, whether the file is readable, whether the file is writable, the type of file and the length of the file in bytes.
- Write a Java program that displays the number of characters, lines and words in a text file.

Exercise 10 (Threads)

- a) Write a Java program that creates threads by extending Thread class .First thread display "Good Morning "every 1 sec, the second thread displays "Hello "every 2 seconds and the third display "Welcome" every 3 seconds ,(Repeat the same by implementing Runnable)
- b) Write a Java program to illustrate the concept of Thread synchronization.
- Write a Java program that correctly implements producer consumer problem using the concept of inter thread communication

Exercise 11 (Collections)

- a) Write a Java program to create a new array list, add some colors (string) and print out the collection.
- b) Write a Java program to iterate a linked list in reverse order.
- Write a Java program to iterate through all elements in a hash list.
- d) Write a Java program to associate the specified value with the specified key in a HashMap.

Exercise 12 (JavaFX)

- a) Write a Java program to demonstrate Mouse and Keyboard event Handling
- b) Write a Java program to design a notepad editor.

Cours	Course Outcomes: On completion of this course, students can						
CO1	Understand and Apply Object oriented features and Java concepts.						
CO2	Examine and analyze alternative solutions to a given problem						
	using java.						
CO3	Apply the concept of multithreading and implement exception						
	handling.						
CO4	Implement front end and back end of an application using Java						
CO5	Develop applications using Console I/O and File I/O, GUI						
	applications.						

Course Outcomes to Program Outcomes Mapping: (1: Low, 2:														
Medium, 3: High)														
	PO									PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	-	3	-	-	-	-	-	-	-	-	2
CO2	2	3	3	-	2	-	-	-	-	-	-	-	-	2
CO3	2	3	3	-	2	-	-	-	-	-	-	-	-	2
CO4	2	3	3	-	2	-	-	-	-	-	-	-	-	2
CO5	2	3	3	-	2	-	-	-	-	-	-	-	-	2
Course	3		3	-	2	-	-	-	-	-	-	-	-	2
		3												

III B. Tech I Semester

S.		Subjec	et	I	Hour	s	
No.	Code	Type	Title	L	T	P	С
01	18CMMST5010	HS	Management	3			3
			Science				
02	18CTCTT5020	PC	Database	3			3
			Management				
			Systems				
03	18CTCTT5030	PC	Operating Systems	3			3
04	18CTCTT504X	PE	Professional	3			3
			Elective-I				
05	18CTXXT505X	OE	Open Elective-I	3			3
06	18CTCTL5060	PC	Database			3	1.5
			Management				
			Systems Lab				
07	18CTCTL5070	PC	Operating Systems			3	1.5
			Lab				
08	18CTCTL5090	SOC	Soft Skills &			4	2
			Aptitude Builder –				
			1				
09	18CMBIN5100	MC	Biology for	2			0
			Engineers				
						20	
		Total	Credits				

III B. Tech II Semester

S.		Subjec	t	I	Hour	S	
No.	Code	Type	Title	L	T	P	С
01	18CTCTT6010	PC	Data Warehousing	3			3
			and Data Mining				
02	18CTCTT6020	PC	Computer	3			3
			Networks				
03	18CTCTT6030	PC	Software	3			3
			Engineering				
04	18CTCTT604X	PE	Professional	3			3
			Elective-II				
05	18CTXXT605X	OE	Open Elective-II	3			3
06	18CMMST6060	HS	Engineering	3			3
			Economics &				
			Financial				
			Management				
07	18CTCTL6070	PC	Computer			3	1.5
			Networks Lab				
08	18CTCTL6080	PC	Data Warehousing			3	1.5
			and Data Mining				
			Lab				
09	18CMMAT6090	SOC	Soft Skills &			4	2
			Aptitude Builder –				
			2				
						23	
Total Credits							

IV B. Tech I Semester

S.		Subjec	et	I	Hour	S	
No.	Code	Type	Title	L	T	P	C
01	18CTCTT7010	PC	Data Analytics	3			3
02	18CTCTT702X	PE	Professional	3			3
			Elective-III				
03	18CTCTT703X	PE	Professional	3			3
			Elective-IV				
04	18CTCTT704X	PE	Professional	3			3
			Elective-V				
05	18CTXXT705X	OE	Open Elective-III	3			3
06	18CTXXT706X	OE	Open Elective-IV	3			3
07	18CTCTL7070	PC	Internet of Things			3	1.5
			Lab				
08	18CTCTL7080	PC	Data Analytics Lab			3	1.5
09	18CTCTL7090	SOC	MEAN Stack			4	2
			Technologies				
10	18CTCTR7100		Internship				3
		•	To	otal (Cred	lits	26

IV B. Tech II Semester

S.	Subject			Hours			
No.	Code	Type	Title	L	T	P	C
01	18CTCTR8010	PROJ	Project			12	12
					12		

Professional Electives:

S.No.	Subject	Professional Elective Number
A	Object Oriented Analysis & Design through UML	1
В	Mobile Application Development	1
С	Machine Learning	1
D	Software Testing	2
Е	Software Project Management	2
F	Artificial Intelligence	2
G	Design Patterns	3
Н	Cyber Security	3
I	Block-Chain Technologies	3
J	Software Quality Assurance	4
K	Ad-hoc & Sensor Networks	4
L	Neural Networks and Soft Computing	4
M	Compiler Design	5
N	Cryptography & Network Security	5
О	Computer Vision	5

Open Electives (Common for CST/CSE): (Offered by CST Department for other departments)

S.No.	Subject
A	Internet of Things
В	Block Chain
С	Quantum Computing
D	Virtual Reality
Е	Data Structures through C
F	Designing Database Management Systems
G	Operating Systems Concepts
Н	R Programming
I	Python Programming
J	Java Programming
K	App Technologies
L	Web Technologies
M	Artificial Intelligence

V SEMESTER (III-I)

MANAGEMENT SCIENCE					
Subject Code	18CMMST5010	IA Marks	30		
Number of Lecture	3	Exam	70		
Hours/Week		Marks			
Total Number of Lecture	50	Exam	03		
Hours		Hours			

Credits - 03

Course objectives:

- To understand the concept of Management its nature importance, Management theories, concept of decision making and organization principles and structures.
- 2. To understand the concept of production management in the organization. Workstudy, SQC, inventory management and its techniques.
- To understand the concept of HRM and its functions, Marketing Management, Strategic management its components.
- 4. To understand the concept of project management PERT, CPM and Project Crashing.
- 5. To understand the concepts of recent trends in management

Inventory control- EOQ, ABC analysis (simple problems) and	
Types of ABC analysis(HML,SDE, VED, and FSN analysis).	
Unit-III: Functional Management & Strategic Management	
Functional Management: Concept of HRM, HRD and PMIR-	
Functions of HRM - Marketing Management- Functions of	
Marketing, Marketing strategies based on product Life Cycle,	
Channels of distributions.	10
Strategic Management: Vision, Mission, Goals, Strategy –	
Elements of Corporate Planning Process - Environmental	
Scanning – SWOT analysis- Steps in Strategy Formulation and	
Implementation, Generic Strategy alternatives.	
Unit -IV: Project Management: (PERT/CPM)	
Development of Network – Difference between PERT and	
CPM	
	10
Identifying Critical Path- Probability- Project	
Crashing (Simple Problems).	
Unit-V: Contemporary Management Practices	
Basic concepts of MIS, MRP, Justin- Time (JIT) system, Total	
Quality Management (TQM), Six sigma , Supply Chain	
Management, Enterprise Resource Planning (ERP), Business	10
Process outsourcing (BPO), Business process Re-engineering	
and Bench Marking, Balanced Score Card.	

Tex	t(T) / Reference(R) Books:
T1	Dr. P. Vijaya Kumar & Dr. N. Appa Rao, 'Management Science' Cengage, Delhi, 2012.
T2	Dr. A. R. Aryasri, Management Science' TMH 2011.
R1	Koontz & Weihrich: 'Essentials of Management' TMH 2011
R2	Seth & Rastogi: Global Management Systems, Cengage Learning, Delhi, 2011.
R3	Robbins: Organizational Behaviors, Pearson Publications, 2011
R4	Kanishka Bedi: Production & Operational Management, Oxford Publications, 2011.

R5	Manjunath: Management Science, Pearson Publications, 2013.
R6	Biswajit Patnaik: Human Resource Management, PHI, 2011.
R7	Hitt and Vijaya Kumar: Strategic Management, Cengage Learning.

Cours	se Outcomes: On completion of this course, students can
CO1	Students are able to understand the concept and functions of
	Management, and Theories of Motivation, Styles of Leadership.
CO2	Students are able to understand the Statistical Quality Control
	Techniques, Methods of inspection, the concept of Inventory
	Management and Control.
CO3	Students are understand the functional areas of organization i.e.,
	Marketing Management, Human Resource Management, and
	Strategic Management
CO4	Students are able to understand Project Management Techniques.
CO5	Students are able to Understand the various contemporary issues
	in Management Practices like TQM and BPO etc.

DATABASE MANAGEMENT SYSTEMS				
Subject Code	18CTCTT5020	IA Marks	30	
Number of Lecture	3	Exam	70	
Hours/Week		Marks		
Total Number of Lecture	50	Exam	03	
Hours		Hours		

Credits - 03

Course Objectives:

- 1. To introduce about database management systems
- 2. To give a good formal foundation on the relational model of data and usage of Relational Algebra
- 3. To introduce the concepts of basic SQL as a universal Database language
- To demonstrate the principles behind systematic database design approaches by covering conceptual design, logical design through normalization
- To provide an overview of database transactions and concurrency control.

Unit -1: Database system architecture	Hour
Omt -1. Database system architecture	S
Introduction to Databases: Characteristics of the Database Approach, Advantages of using the DBMS Approach, A Brief History of Database Applications. Overview of Database Languages and Architectures: Data Models, Schemas and Instances, Three-Schema Architecture and Data Independence, Database Users, Architecture for DBMS.	10
Unit -2 : E-R Models	
The E-R Models, The Relational Model, Introduction to Database Design, Dat abase Design and Er Diagrams, Entities Attributes, and Entity Sets, Relationship and Relationship Sets, Conceptual Design with the Er Models, The Relational Model Integrity Constraints Over Relations, Key Constraints, Foreign Key Constraints, General Constraints.	10
Unit - 3: Relational Algebra	
Relational Algebra, Selection and Projection, Set Operation, Renaming, Joins, Division, More Examples of Queries,	10

Relational Calculus: Tuple Relational Calculus, Domain	
Relational Calculus.	
The Form of Basic SQL Query, Union, Intersect, and Except,	
Nested Queries, Aggregate Operators, Null Values, Complex	
Integrity Constraints in SQL, Triggers and Active Database.	
Unit - 4: Normalization	
Purpose of Normalization or schema refinement, concept of functional dependency, normal forms based on functional dependency (1NF, 2NF and 3 NF), concept of surrogate key, Boyce-Codd normal form (BCNF), Lossless join and dependency preserving decomposition, Fourth normal form(4NF).	08
Unit - 5: Transaction Management	
Transaction, properties of transactions, transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks, Concurrency control with time stamp ordering: Wait/Die and Wound/Wait Schemes, Database Recovery management.	12

Text	(T) / Reference(R) Books:
T1	Introduction to Database Systems, C J Date, Pearson.
T2	Database Management Systems,3 rd Edition,Raghurama Krishnan, Johannes Gehrke, TATA Mc Graw Hill.
Т3	Database Systems-The Complete Book, H G Molina, J D Ullman, J Widom Pearson.
T4	Database Management Systems,6/e Ramez Elmasri, Shamkant B. Navathe, PEA
R1	Database Systems design, Implementation, and Management, 7 th Edition,Peter Rob & Carlos Coronel
R2	Database System Concepts, 5 th edition, Silberschatz, Korth, TMH
R3	The Database Book Principles & Practice Using Oracle/MySQL, Narain Gehani, University Press.
W1	https://onlinecourses.nptel.ac.in/noc18_cs15/preview
W2	https://www.coursera.org/courses?query=database

Cours	se Outcomes: On completion of this course, students can
CO1	Understand the basic elements of a relational database
	management system.
CO2	Draw entity relationship and convert entity relationship diagrams
	into RDBMS.
CO3	Create, maintain, and manipulate a relational database using SQL.
CO4	Designs and applies normalization techniques for logical schema
	model.
CO5	Solves concurrent issues and problems through locking
	mechanism.

OPERATING SYSTEMS			
Subject Code	18CTCTT5030	IA Marks	30
Number of Lecture	3	Exam	70
Hours/Week		Marks	
Total Number of Lecture	50	Exam	03
Hours		Hours	

Credits - 03

Course Objectives:

- Introduce the basic concepts of operating systems, its functions and services.
- 2. To provide the basic concepts of process management and synchronization.
- 3. Familiarize with deadlock issues.
- 4. Understand the various memory management skills.
- 5. Give exposure over I/O systems and mass storage structures.

Unit -1: Operating Systems Overview	Hours
Computer system organization, Operating system structure, Process, memory, storage management, Protection and security, Distributed systems, Computing Environments, Open-source operating systems, OS services, User operating-system interface.	10
Unit -2 :System Calls & IPC	
System calls, Types, System programs, OS structure, OS generation, System Boot Process concept, scheduling (Operations on processes, Cooperating processes, Inter-process communication), Multi-threading models	10
Unit – 3: Process Management	
Basic concepts, Scheduling criteria, Scheduling algorithms, Thread scheduling, Multiple processor scheduling Operating system, Algorithm Evaluation, The critical section problem, Peterson's solution, Synchronization hardware, Semaphores, Classic problems of synchronization, Critical regions, Monitors.	10
Unit – 4:Memory Management & Dead lock	<u> </u>
System model, Deadlock characterization, Methods for handling deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock detection, Recovery from deadlock.	10

Storage	Management:	Swapping,	Contiguous	memory	
allocation,	Paging, Segme	entation Virtua	al Memory Ba	ckground,	
Demand pa	aging, copy on	write, Page 1	eplacement an	d various	
Page replac	cement algorith	ıms, Allocatio	n of frames, T	hrashing.	
Unit - 5:I/	O Systems				
File conce	pt, Access met	hods, Directo	ry structure, F	ilesystem	
mounting,	Protection, D	irectory impl	lementation, A	Allocation	10
methods,	Free-space m	anagement,	Disk scheduli	ng, Disk	10
manageme	nt, Swap-space	management	, Protection.		

Text	(T) / Reference(R) Books:	
T1	Operating System Concepts Essentials, Abraham Silberschatz,	
	Peter B. Galvin, Greg Gagne, John Wiley & Sons Inc., 2010.	
T2	Operating System Concepts, 9th Edition, Abraham Silberschatz,	
	Peter Baer Galvin and Greg Gagne, John Wiley and Sons Inc., 2012	
Т3	Operating Systems, Second Edition, S Halder, Alex A Aravind,	
	Pearson Education, 2016	
T4	Operating Systems – Internals and Design Principles, 7th Edition,	
	William Stallings, Prentice Hall, 2011	
R1	Modern Operating Systems, Second Edition, Andrew S.	
	Tanenbaum, Addison Wesley, 2001.	
R2	Operating Systems: A Design-Oriented Approach, Charles	
	Crowley, Tata McGraw Hill Education, 1996.	
R3	Operating Systems: A Concept-based Approach, Second Edition,	
	D M Dhamdhere, Tata McGraw-Hill Education, 2007	
R4	Operating Systems: Internals and Design Principles, Seventh	
	Edition, William Stallings, Prentice Hall, 2011	
W1	https://www.coursera.org/courses?query=operating%20system	
W2	https://onlinecourses.nptel.ac.in/noc16_cs10/preview	

Cours	Course Outcomes: On completion of this course, students can		
CO1	Demonstrate knowledge on Computer System organization and		
	Operating system services.		
CO2	Design solutions for process synchronization problems by using		
	System calls and Inter process communication.		
CO3	Identify the functionality involved in process management		
	concepts like scheduling and synchronization.		
CO4	Design models for handling deadlock and perform memory		
	management.		

CO5	Analyze services of I/O subsystems and mechanisms of security
	& protection.

OBJECT ORIENTED A	NALYSIS & DESIGN TH	ROUGH U	ML
(PROFE	SSIONAL ELECTIVE – I)		
Subject Code	18CTCTT504X	IA Marks	30
Number of Lecture	3	Exam	70
Hours/Week		Marks	
Total Number of Lecture	50	Exam	03
Hours		Hours	
	Credits – 03		•
2. analyze the probl	to solve complex problems are ems using object oriented app	proach	
approach	s to the problems using	ıage	Hours
Cint – 1. Introduction		1	iours
OOAD, Introduction to ite process, Introduction to U artefacts, why we mode	ctivities/ Workflows / Discip erative development and the ML, Mapping Disciplines to el, Conceptual model of lationships, Common Mech grams.	unified UML UML,	08
Unit – 2 : Classes and Ob	jects		
Class, Relationship among	•	ses and Proper	10
Unit – 3 : Basic Behaviora	nl Modelling		
	diagrams, Use cases, Us	e case	10

10

Events and signals, state machines, processes and Threads,

time and space, state chart diagrams.

Unit – 5:Architectural Modelling	
Component, Deployment, Component diagrams and	
Deployment diagrams. Case Study: The Unified Library	12
application.	

Text	Text(T) / Reference® Books:		
T1	Object- Oriented Analysis and Design with Applications, Grady		
	BOOCH, Robert A. Maksimchuk, Michael W. ENGLE, Bobbi J.		
	Young, Jim Conallen, Kellia Houston, 3 rd edition, 2013,		
	PEARSON.		
T2	The Unified Modeling Language User Guide, Grady Booch, James		
	Rumbaugh, Ivar Jacobson, 12 th Impression, 2012, PEARSON.		
T3	Applying UML and Patterns by Criag Larman, Person		
R1	Object-oriented analysis and design using UML, Mahesh P.		
	Matha, PHI.		
R2	Head first object-oriented analysis and design, Brett D.		
	McLaughlin, Gary Pollice, Dave West, O"Reilly.		
R3	Object-oriented analysis and design with the Unified process John		
	W. Satzinger, Robert B. Jackson, Stephen D. Burd, Cengage		
	Learning.		
R4	The Unified modelling language Reference manual, James		
	Rumbaugh, Ivar Jacobson, Grady Booch, Addison-Wesley.		
W1	https://www.coursera.org/courses?query=uml		
W2	https://www.udemy.com/topic/uml/		

Course Outcomes: On completion of this course, students can		
CO1	Ability to find solutions to the complex problems using object-	
	oriented approach.	
CO2	Represent classes, responsibilities and states using UML notation.	
CO3	Identify Classes of problem domain.	
CO4	Identify the responsibilities of the problem domain.	
CO5	Learn Architectural modelling concepts	

MOBILE APPLICATION DEVELOPMENT (PROFESSIONAL ELECTIVE – I)			
Subject Code	18CTCTT504X	IA Marks	30
Number of Lecture	3	Exam	70
Hours/Week		Marks	
Total Number of Lecture	50	Exam	03
Hours		Hours	

Credits - 03

Course Objectives:

The learning objectives of this course are:

- 1. Provide knowledge on tools required for Mobile Application Development using Android.
- 2. Discuss android User Interface using Views.
- 3. Impart Android User Interface for pictures and menus.

4. Introduce knowledge on android databases.

4. Introduce knowledge on android databases.	
Unit -1: Started with Android and Android Studio	Hours
What Is Android, Required Tools, Launching First Android Application,	08
Exploring the IDE, Debugging Application, Publishing Application.	
Unit -2 :Android User Interface	
Understanding the Components of a Screen, Adapting to Display Orientation, Managing Changes to Screen Orientation, Creating the User Interface Programmatically, Basic Views, Picker Views, List Views	10
Unit – 3:Activities, Fragments, and Intents	
Understanding Activities, Linking Activities Using Intents, Fragments, Displaying Notifications.	10
Unit – 4:Data Persistence	
Saving and Loading User Preferences, Persisting Data to Files, Creating and Using Databases.	10

Unit – 5:Messaging and Location-Based Services	
SMS Messaging, Sending Email, Displaying Maps, Getting Location Data, Monitoring a Location.	12

Text	Text(T) / Reference® Books:	
T1	Beginning Android® Programming with Android Studio, JF	
	DiMarzio, John Wiley & Sons, Inc. (Wrox)	
T2	Professional Android 4 Application Development, Reto Meier,	
	Wiley India, (Wrox)	
R1	Beginning Android 4 Application Development, Wei-Meng Lee,	
	Wiley India (Wrox)	
R2	Android Programming: The Big Nerd Ranch Guide, Bill Phillips,	
	Chris Stewart and Kristin Marsicano, Big Nerd Ranch, LLC.	
W	https://developer.android.com/	
1		
W	https://www.coursera.org/courses?query=mobile%20app%20devel	
2	opment	

Course Outcomes: On completion of this course, students can	
CO1	Create, test and debug Android application by setting up Android
	development environment
CO2	Implement an adaptive, responsive user interface that work across
	a wide
	range of devices.
CO3	Design and develop individual components that can communicate
	with each
	other by using intents and notifications.
CO4	Design and develop solutions for real world problems with
	android mobile
	applications.
CO5	Demonstrate problem solving skills to create applications for
	mobile devices.

MACHINE LEARNING (PROFESSIONAL ELECTIVE – I)			
Subject Code	18CTCTT504X	IA Marks	30
Number of Lecture	3	Exam	70
Hours/Week		Marks	
Total Number of Lecture	50	Exam	03
Hours		Hours	

Credits - 03

Course Objectives:

- 1. Familiarity with a set of well-known supervised, unsupervised and semi-supervised learning algorithms.
- 2. The ability to implement some basic machine learning algorithms.
- 3. Understanding of how machine learning algorithms are evaluated.

Unit -1: The ingredients of machine learning, Tasks	Hours
The problems that can be solved with machine learning, Models: the output of machine learning, Features, the workhorses of machine learning. Binary classification and related tasks: Classification, Scoring and ranking, Class probability estimation. Beyond binary classification: Handling more than two classes, Regression, Unsupervised and descriptive learning.	09
Unit -2 :Concept learning	
The hypothesis space, Paths through the hypothesis space, Beyond conjunctive concepts. Tree models:Decision trees, Ranking and probability estimation trees, Tree learning as variance reduction. Rule models:Learning ordered rule lists, Learning unordered rule sets, Descriptive rule learning, First-order rule learning.	10
Unit – 3:Linear models	
The least-squares method, The perceptron: a heuristic learning algorithm for linear classifiers, Support vector machines,	10

obtaining probabilities from linear classifiers, Going beyond		
linearity with kernel methods.		
Distance Based Models: Introduction, Neighbors and		
exemplars, Nearest		
Neighbors classification, Distance Based Clustering,		
Hierarchical Clustering.		
Unit – 4:Probabilistic models		
The normal distribution and its geometric interpretations,		
Probabilistic models for categorical data, Discriminative		
learning by optimizing conditional Likelihood Probabilistic		
models with hidden variables.		
Features: Kinds of feature, Feature transformations, Feature		
construction and selection.		
Model ensembles: Bagging and random forests, Boosting.		
Unit – 5:Dimensionality Reduction		
Principal Component Analysis (PCA), Implementation and		
demonstration. Artificial Neural Networks: Introduction, Neural		
network representation, appropriate problems for neural	11	
network learning, Multilayer networks and the back-propagation		
algorithm.		

Text	Text(T) / Reference® Books:		
T1	Machine Learning: The art and science of algorithms that make		
	sense of data, Peter Flach, Cambridge.		
T2	Machine Learning, Tom M.Mitchell, MGH		
R1	Understanding Machine Learning: From Theory to algorithms,		
	Shai Shalev-Shwartz, Shai Ben-David, Cambridge.		
R2	Machine Learning in Action,Peter Harington,2012, Cengage		
W1	https://www.tutorialspoint.com/what-is-machine-learning		
W2	https://www.analyticsvidhya.com/machine-learning/		
W3	https://www.youtube.com/watch?v=eq7KF7JTinU		

Cours	se Outcomes: On completion of this course, students can	
CO1	Student should be able to understand the classification and its	
	types and problems solved by ML.	
CO2	Student should be able to illustrate hypothesis space, decision trees	
	and First order rule learning.	
CO3	Student should be able to apply different classifires like SVM,	
	KNN and Clustering techniques.	
CO4	CO4 Student should be able to apply classifiers like Naïve bayes	
	random forest.	
CO5	Student should be able to compare different dimensionality	
	reduction techniques.	

DATABASE MANAGEMENT SYSTEMS LAB			
Subject Code	18CTCTL5060	IA Marks	15
Number of Tutorial	03(P)	Exam Marks	35
Hours/Week			
Total Number of Practice	36	Exam Hours	03
Hours			

Credits - 1.5

List of Experiments

SQL

Exercise1

Queries to facilitate acquaintance of Built-In Functions, String Functions, Numeric Functions, Date Functions and Conversion Functions.

Exercise2

Queries using operators in SQL

Exercise3

Queries to Retrieve and Change Data: Select, Insert, Delete, and Update

Exercise4

Queries using Group By, Order By, and Having Clauses

Exercise5

Queries on Controlling Data: Commit, Rollback, and Save point

Exercise6

Queries for Creating, Dropping, and Altering Tables, Views, and Constraints

Exercise7

Queries on Joins and Correlated Sub-Queries

Exercise 8

Queries on Working with Index, Sequence, Synonym, Controlling Access, and Locking Rows for Update, Creating Password and Security features

PL/SOL

Exercise 9

Write a PL/SQL Code using Basic Variable, Anchored Declarations, and Usage of Assignment Operation

Exercise10

Write a PL/SQL Code Bind and Substitution Variables. Printing in PL/SQL

Exercise11

Write a PL/SQL block using SQL and Control Structures in PL/SQL

Exercise12

Write a PL/SQL Code using Cursors, Exceptions and Composite Data Types

Exercise13

Write a PL/SQL Code using Procedures, Functions, and Packages FORMS

Exercise14

Write a PL/SQL Code Creation of forms for any Information System such as Student Information System, Employee Information System etc. 18.

Cours	e Outcomes: On completion of this course, students can
CO1	Understand, appreciate and effectively explain the underlying concepts of database technologies.
CO2	Design and implement a database schema for a given problem-domain, Normalize a database
CO3	Populate and query a database using SQL DML/DDL commands.
CO4	Declare and enforce integrity constraints on a database using a state-of-the-art RDBMS
CO5	Programming PL/SQL including stored procedures, stored functions, cursors, packages. Design and build a GUI application using a 4GL

OPERATING SYSTEMS LAB			
Subject Code	18CTCTL5070	IA Marks	15
Number of Tutorial	03(P)	Exam Marks	35
Hours/Week			
Total Number of Practice	36	Exam Hours	03
Hours			

Credits - 1.5

List of Experiments

Exercise1

Simulate the following CPU scheduling algorithms

- a) Round Robin
- b) SJF
- c) FCFS
- d) Priority

Exercise2

Loading executable programs into memory and execute system call implementation for read(), write(), open(), and close().

Exercise3

Implement fork(), wait(), exec() and exit() system calls.

Exercise4

Simulate the following file allocation strategies

- a) Sequenced
- b) Indexed and
- c) Linked

Exercise5

Simulate MVT and MFT

Exercise6

Simulate the following File Organization Techniques

- a) Single Level Directory
- b) Two Level
- c) Hierarchical
- d) DAG

Exercise7

Simulate Bankers Algorithm for Deadlock Avoidance

Exercise 8

Simulate Bankers Algorithm for Deadlock Prevention

Exercise9

Simulate the following page replacement algorithms

- a) FIFO
- b) LRU
- c) LFU

Exercise10

Simulate Paging Technique of memory management.

Cours	se Outcomes: On completion of this course, students can
CO1	To implement CPU scheduling algorithms.
CO2	To implement deadlock avoidance and prevention algorithms.
CO3	To implement page replacement and memory management algorithms.
CO4	To apply the process management concepts & Techniques.
CO5	To implement the storage management concepts.

Soft Skills & Aptitude Builder – 1			
Subject Code	18CTCTL5090	IA Marks	15+15
Number of Lecture	2	Exam	35+35
Hours/Week		Marks	
Total Number of Lecture	32	Exam	3
Hours		Hours	
	Credits – 2		
	on A,Soft Skills		
Unit – 1: Intrapersonal Com			Hours
Introduction to Soft Skills and			
Personal Effectiveness : Who			
Strengths and Weaknesses; SW	/OT Analysis; SMA	ART Goal	
Setting; Being Proactive			
Principles of Personal Vision	: Beginning with the	e End in	6
Mind;			· ·
Time Management: Understand	ding Priorities; Put l	First-Things-	
First			
Activity: Psychometric Tests a	nd SWOT Analysis	, SMART	
Goal Setting			
Unit 2: Interpersonal Comm			
Principles of Creative Coope	_		
Think Win-Win; Seek First to		be	
Understood; Synergize; Life-Long Learning			
Emotional Intelligence: Self-Awareness, Self-Regulation,		6	
Empathy, Assertiveness, Adoptability, Managing Emotions		Ů	
Activity: Resolving a Conflict			
Friend/Colleague/Family Mem	ber; Group Discuss	sions &	
Debates State Stat			
Unit – 3: 21st Century Skills			
What are 21st Century Skills's	Learning Skills-	Digital	
Literacy- Life Skills	. 01		
Critical Thinking: Active List			
Introspection, Analytical Thinking, Open Mindedness Problem Solving : Understanding the Complexity of the			
			6
Problem, Defining the Problem			
Exploring Possible Solutions, I			
Results of your Actions, Gettin		ning the	ļ
Problem, The Problem Solving	Cycle		

Decision Making: Managing Conflict, Conflict Resolution, Methods of Decision Making, Effective Decision Making in	
Teams – Methods & Styles	
Activity: Case Study	
Section B,Aptitude Builder	
Unit – 4: Ratios & Percentages	
Definition of Ratio, Properties of Ratios, Comparison of	
Ratios, Problems on Ratios, Compound Ratio, Problems on	
Proportion, Mean Proportional and Continued Proportion.	
Partnership: Introduction, Relation between Capitals, Period	
of Investments and Shares	
Number System: Classification of Numbers, Divisibility	
Rules, Finding the Units Digit, Finding Remainders in	
Divisions Involving Higher Powers, LCM and HCF Models	
Percentages: Introduction, Converting a Percentage into	
Decimals, Converting a Decimal into Percentage, Percentage	
Equivalent of Fractions, Problems on Percentages	_
Profit And Loss: Problems on Profit and Loss Percentage,	7
Relation between Cost Price and Selling Price, Discount and	
Marked Price, Two Different Articles Sold at Same Cost Price,	
Two Different Articles Sold at Same Selling Price Gain% /	
Loss% on Selling Price	
Problems on Ages: Introduction, Problems based on Ages	
Averages: Definition of Average, Rules of Average, Problems	
on Average, Problems on Weighted Average, Finding Average	
using Assumed Mean Method Alligation and Mixture:	
Problems on Mixtures, Alligation Rule, Problems on	
Alligation	
Unit – 5: Mental Ability	
Difference Series, Product Series, Squares Series, Cubes	
Series, Alternate Series Combination Series, Miscellaneous	
Series, Place Values of Letters	
Number and Letter Analogies: Definition of Analogy,	
Problems on Number Analogy, Problems on Letter Analogy,	
Problems on Verbal Analogy	_
Odd Man Out: Problems on Number Odd Man Out, Problems	7
on Letter Odd Man Out, Problems on Verbal Odd Man Out	
Coding and Decoding: Coding using Same Set of Letter,	
Coding using Different Set of Letters, Coding into a Number, Problems on R-Model	
Blood relations: Defining the Various Relations among the	
Members of a Family, Solving Blood Relation Puzzles,	
internocis of a Family, Solving blood Relation Fuzzies,	l .

Solving the Problems on Blood	Relations using Symbols and	
Notations		
Direction Sense: Solving Prob	lems by Drawing the Paths,	
Finding the Net Distance Trave	lled, Finding the Direction,	
Problems on Clocks ,Problems	on Shadows	
Section-A: Text (T) / Referen	ce (R) Books:	
For Units 1, 2, & 3		
T1 English and Soft Skills	, Dr. S. P. Dhanvel, Orient Blackswan,	
2011		
	Effective People, Stephen R Covey	
	, Daniel Goleman, Bantom Book, 2006	
R3 21st Century Skills: Le	arning for Life in our Times, Bernie	
Trilling, Charles Fadel		
For Units 4&5		
T1 R S Agarwal, S Chand,	'Quantitative Aptitude'	
T2 R S Agarwal, S.Chand,		
Reasoning'		
R1 Quantitative Aptitude for	r CAT By Arun Sharma	
R2 GL Barrons, Mc Graw I	Hills, Thorpe's Verbal Reasoning, LSAT	
Materials		
Course Outcomes: On comple	etion of this course, students can	
Section A: Soft Skills		
CO1 re-engineer attitude and understand its influence on		
behavior		
CO 2 develop interpersona	l skills and be an effective goal oriented	
team player		
CO 3 develop holistic personality with a mature outlook to		
	n different circumstances	
Section B: Aptitude Builder		
CO 4 solve the real-time pr	oblems for performing job functions	
easily		
CO 5 analyse the problems	logically and critically	

BIOLO	OGY FOR ENGINEERS		
Subject Code	21CTMSN3100	IA Marks	30
Number of Lecture	2	Exam	70
Hours/Week		Marks	
Total Number of Lecture	30	Exam	03
Hours		Hours	

Credits - 00

Course Objectives:

- 1. Appreciate the basic organization of organisms and living being.
- 2. Understand the machinery of the cell that is ultimately responsible for various daily activities.
- 3. Acquire knowledge about biological problems that requires engineering expertise to solve them.

engineering expertise to solve them.	
Unit -1: Introduction	Hours
Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology. How biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor.	06
Unit -2: Classification	
Plant Hierarchy of life forms at phenomenological level-classification based on (a) cellularity - Unicellular or multicellular (b) ultra-structure- prokaryotes or eukaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophy, lithotrophs (d) Ammonia excretion – ammoniotelic, uricotelic, ureotelic (e) Habitats- aquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology come from different groups. E. coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. Musculus.	05
Unit – 3:Genetics & Biomolecules	
Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the	06

phases but how genetic material passes from parent to offspring.	
Concepts of recessiveness and dominance. Concept of mapping	
of phenotype to genes. Discuss about the single gene disorders	
in humans. Discuss the concept of complementation using	
human genetics.	
Unit – 4:Enzymes & Proteins	
Enzymology: How to monitor enzyme catalyzed reactions.	
How does an enzyme catalyze reactions - Enzyme classification.	
Mechanism of enzyme actionexamples. Enzyme kinetics and	
kinetic parameters. Why should we know these parameters to	07
understand biology? RNA catalysis.	U/
Proteins- structure and function. Hierarch in protein structure.	
Primary secondary, tertiary and quaternary structure. Proteins as	
enzymes, transporters, receptors and structural elements.	
Unit – 5:Microbiology & Metabolism	
Thermodynamics as applied to biological systems - Exothermic	
and endothermic versus undergone and exergoinc reactions.	
Concept of Keq and its relation to standard free energy -	
Spontaneity - ATP as an energy currency. This should include	0.0
the breakdown of glucose to CO ₂ + H ₂ O (Glycolysis and Krebs	06
cycle) and synthesis of glucose from CO ₂ and H ₂ O	
(Photosynthesis). Energy yielding and energy consuming	
reactions. Concept of Energy charge.	

Text	(T) / Reference(R) Books:
T1	Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry,
	Lisa; Cain, M, L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R.
	B. Pearson Education Ltd
T2	Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G;
	Doi, R.H., John Wiley and Sons
T3	Microbiology, Prescott, L.M J.P. Harley and C.A. Klein 1995. 2nd
	edition Wm, C. Brown Publishers
R1	Principles of Biochemistry (V Edition), By Nelson, D. L.; and Cox,
	M. M.W.H. Freeman and Company
R2	Molecular Genetics (Second edition), Stent, G. S.; and Calender,
	R.W.H. Freeman and company, Distributed by Satish Kumar Jain
	for CBS Publisher
W1	https://ocw.mit.edu/courses/biological-engineering/
W2	https://onlinecourses.nptel.ac.in/noc16_ge03/preview

Course Outcomes: On completion of this course, students can	
CO1	Describe how biological observations of 18th Century that lead to
	major discoveries.
CO2	Convey that classification is not what biology is all about but
	highlight the underlying criteria, such as morphological,
	biochemical and ecological.
CO3	Highlight the concepts of recessiveness and dominance during the
	passage of genetic material from parent to offspring
CO4	Convey that all forms of life have the same building blocks and
	yet the manifestations are as diverse as one can imagine
CO5	Classify enzymes and distinguish between different mechanisms
	of enzyme action, To convey that "Genetics is to biology what
	Newton's laws are to Physical Sciences"

VI SEMESTER (III-II)

DATA WAREHOUSING AND DATA MINING			
Subject Code	18CTCTT6010	IA Marks	30
Number of Lecture	3	Exam	70
Hours/Week		Marks	
Total Number of Lecture	50	Exam	03
Hours		Hours	

Credits - 03

- 1. Students will be enabled to understand and implement classical models and algorithms in data warehousing and data mining.
- 2. They will learn how to analyze the data, identify the problems, and choose the relevant models and algorithms to apply.
- 3. They will further be able to assess the strengths and weaknesses of various methods and algorithms and to analyze their behavior.

Unit -1: Introduction	Hours
Why Data Mining? What Is Data Mining? What Kinds of Data Can Be Mined? What Kinds of Patterns Can Be Mined? Which	08
Technologies Are Used?, Which Kinds of Applications Are Targeted? Major Issues in Data Mining.	
Unit -2: Data Pre-processing	
Data Pre-processing: An Overview, Data Cleaning, Data Integration, Data Reduction, Data Transformation and Data Discretization	10
Unit – 3: Classification	
Basic Concepts, General Approach to solving a classification problem, Decision Tree Induction: Working of Decision Tree, building a decision tree, methods for expressing an attribute test conditions, measures for selecting the best split, Algorithm for decision tree induction. Bayes' Theorem, Naïve Bayesian Classification, Bayesian Belief Networks	10
Unit – 4: Association Analysis	

Problem Definition, Frequent Item Set generation, Rule generation, compact representation of frequent item sets, FP-	
Growth Algorithm.	ļ
Unit – 5: Cluster Analysis	
What Is Cluster Analysis? Different Types of Clustering,	1
Different Types of Clusters; K-means: The Basic K-means	
Algorithm, K-means Additional Issues, Bisecting K-means,	İ
Strengths and Weaknesses; Agglomerative Hierarchical	12
Clustering: Basic Agglomerative Hierarchical Clustering	
Algorithm DBSCAN: Traditional Density Centre-Based	1
Approach, DBSCAN Algorithm, Strengths and Weaknesses.	1

Text	Text(T) / Reference® Books:		
T1	Introduction to Data Mining: Pang-Ning Tan & Michael		
	Steinbach, Vipin Kumar, Pearson.		
T2	Data Mining concepts and Techniques, 3/e, Jiawei Han, Michel		
	Kamber, Elsevier		
R1	Data Mining Techniques and Applications: An Introduction,		
	Hongbo Du, Cengage		
	Learning.		
R2	Data Mining: Vikram Pudi and P. Radha Krishna, Oxford.		
R3	Data Mining and Analysis - Fundamental Concepts and		
	Algorithms; Mohammed J. Zaki, Wagner Meira, Jr, Oxford		
R4	Data Warehousing Data Mining & OLAP, Alex Berson, Stephen		
	Smith, TMH.		
R5	Data Mining: Introductory and Advanced Topics: Dunham,		
	Pearson.		
W1	https://www.edx.org/learn/data-mining		
W2	https://www.coursera.org/specializations/data-mining		
W3	https://www.coursera.org/courses?query=data%20warehouse		

Course Outcomes: On completion of this course, students can		
CO1	Understand stages in building a Data Warehouse	
CO2	Understand the need and importance of pre-processing techniques	
CO3	Understand the need and importance of Similarity and dissimilarity techniques	

CO4	Analyze and evaluate performance of algorithms for Association Rules.
CO5	Analyze Classification and Clustering algorithms

COMPUTER NETWORKS			
Subject Code	18CTCTT6020	IA Marks	30
Number of Lecture	3	Exam	70
Hours/Week		Marks	
Total Number of Lecture	50	Exam	03
Hours		Hours	

Credits - 03

- 1. Familiarize with the concepts of the internet and the concepts of layer protocol architecture.
- 2. Exposure to the important principles behind the working of various layers of the network.
- 3. Demonstrate the working of the most important protocols used in the internet.

Unit -1:	Hours
Network Topologies, WAN, LAN, MAN. OSI Reference Model, TCP/IP Reference Model, Multiplexing (Frequency Division, Wavelength Division, Synchronous Time Division and Statistical Time Division Multiplexing Techniques), Switching Techniques (Circuit-switching, Datagram, Virtual	
Circuit Networks).	
Unit -2:	
Design Issues, Services Provided to the Network Layer, Framing, Error Control, Flow Control, Error Detection and Correction, Error Correcting Codes, Error Detecting Codes, A Simplex Stop and Wait Protocol for an Error free channel, A Simplex Stop and Wait Protocol for a Noisy Channel, Sliding Window Protocols (A One Bit Sliding Window Protocol-A Protocol Using GoBack-NA Protocol Using Selective Repeat), Data Link Layer in	10

HDLC: Configuration and transmission modes, frames, control	
fields.	
Unit - 3:	
The Channel Allocation Problem, Static Channel Allocation,	
Assumptions for Dynamic Channel Allocation, Multiple Access	08
Protocols (Aloha, Carrier Sense Multiple Access Protocols,	00
Collision-Free Protocols, Limited Contention Protocols,	
Wireless LAN Protocols).	
Unit - 4:	
Routing Algorithms- Shortest-Path Routing, Flooding,	
Hierarchical routing,	08
Broadcast, Multicast and Distance Vector Routing.	
Unit - 5:	
Congestion Control Algorithms, Approaches to Congestion	
Control-Traffic	
Aware Routing-Admission Control-Traffic Throttling-Load	
Shedding, IP	
Addressing, Classless and Class full Addressing, Sub-netting.	12
The Domain Name System- The DNS Name Space, Resource	
Records, Name Servers, Electronic Mail Architecture and	
Services, The User Agent, Message Formats, Message Transfer,	
Final Delivery.	

Text	(T) / Reference(R) Books:
T1	Computer Networks, 5th Edition, Tanenbaum and David J
	Wetherall, Pearson Edu, 2010.
T2	Computer Networks: A Top Down Approach, Behrouz A.
	Forouzan, Firouz Mosharraf, McGraw Hill Education.
T3	Computer Networks, Mayank Dave, CENGAGE Ltd, New Delhi.
T4	Data and Computer Communications, Fifth Edition, William
	Stallings, PHI, 2005.
R1	Computer Networks, A Systems Approach, Fifth Edition, Peterson
	& Davie, Harcourt, 2011.
R2	Network Management Standards, Second Edition, Ulysses Black,
	McGraw Hill, 1994.
R3	Computer Networking - A Top-down Approach, Sixth Edition,
	James F. Kurose, Keith W. Ross, Pearson, 2013.

R4	.Computer Networks - A Systems Approach, 5th ed, Larry L.	
	Peterson and Bruce S. Davie, Morgan Kaufmann/Elsevier, 2011.	
W1	https://swayam.gov.in/courses/5172-computer-networks	
W2	https://www.coursera.org/courses?query=computer%20network	

Cours	Course Outcomes: On completion of this course, students can		
CO1	Illustrate the concept of network reference models and classification of multiplexing.		
CO2	Explain the design issues and various protocols of data link layer.		
CO3	Interpret the use of medium access control sub layer.		
CO4	Analyze various routing algorithms.		
CO5	Experiment with congestion control algorithms and to illustrate		
	the concept of domain name system.		

	WARE ENGINEERING 18CTCTT6030	IA Marks	30
Subject Code			
Number of Lecture	3	Exam	70
Hours/Week		Marks	
Total Number of Lecture	50	Exam	03
Hours		Hours	
	Credits – 03		
Course Objectives:			
The learning objectives of t	his course are:		
	are life cycle models and	to understa	nd the
software requirements and	SRS document.		
2. To understand the import	ance of modeling and model	ling languaş	ges and
to design and develop corre	ct and robust software prod	ucts. \square	
3. To understand the quali	ity control and how to en	sure good	quality
software. □			
4. To understand the planning and estimation of software projects. \Box			
5. To understand the implementation issues, validation and verification			
procedures.			
6. To understand the mainte			
Unit -1: Software and Software Engineering			Hours
The Nature of Software,	The Unique Nature of We	b Apps,	
Software Engineering, Soft	ware Process, Software Eng	gineering	
Practice, software Myths.	Process Models: A Generic	Process	
Model Deceses Assesses	ent and Improvement, Pre	scriptive	08
Model, Process Assessme		•	
	zed Process Models, The	Unified	
Process Models, Specialize Process, Personal and			
Process Models, Specialization	Team Process Models,	Process	
Process Models, Specialize Process, Personal and	Team Process Models, Process. Requirements Anal	Process lysis and	
Process Models, Specialize Process, Personal and Terminology, Product and	Team Process Models, Process. Requirements Analysis, Gathering and Analysis,	Process lysis and Software	

219

10

Overview of the Design Process, How to Characterize of a Design, Cohesion and Coupling, Layered Arrangement of

Modules, Approaches to Software Design. Function-Oriented Software Design: Overview of SA/SD Methodology, Structured analysis, Developing the DFD Model of a System, Structured Design, Detailed Design, Design Review, over view of Object-Oriented design. User Interface Design: Characteristics of Good

User Interface, Basic Concepts, Types of User Interfaces,	
Fundamentals of component-based GUI Development, A User	
Interface Design Methodology.	
Unit – 3: Coding and Testing	
Coding, Code Review, Software Documentation, Testing, Unit	
Testing, Black-Box Testing, White-Box Testing, Debugging,	10
Program Analysis Tool, Integration Testing, Testing Object-	10
Oriented Programs, System Testing, Some General Issues	
Associated with Testing.	
TL'4 A.C. & D.P. L'P4 LO. P4 M	
Unit – 4: Software Reliability and Quality Management	
Software Reliability, Statistical Testing, Software Quality,	
Software Quality Management System, ISO 9000, SEI	
Capability Maturity Model. Computer Aided Software	
	10
Engineering: Case and its Scope, Case Environment, Case	10
Support in Software Life Cycle, Other Characteristics of Case	
tools, Towards Second Generation CASE Tool, Architecture of	
a Case Environment.	
Unit – 5: Software Maintenance	
Software maintenance, Maintenance Process Models,	
Maintenance Cost, Software Configuration Management.	
Software Reuse: what can be reused? Why almost No Reuse So	12
Far? Basic Issues in Reuse Approach, Reuse at organization	
Level.	
Ec (c).	

Text	Text(T) / Reference(R) Books:				
T1	Software engineering A practitioner's Approach, Roger S.				
	Pressman, Seventh Edition McGrawHill International Edition.				
T2	Fundamentals of Software Engineering, Third Edition, Rajib Mall,				
	PHI.				
T3	Software Engineering, Ian Sommerville, Ninth edition, Pearson				
	education				
T4	Software Engineering, Concepts and Practices, Ugrasen Suman,				
	Cengage Learning				

R1	Software Engineering A Primer, Waman S Jawadekar, Tata		
	McGraw-Hill, 2008		
R2	Software Engineering, A Precise Approach, Pankaj Jalote, Wiley		
	India, 2010.		
R3	Software Engineering, Principles and Practices, Deepak Jain,		
	Oxford University Press		
R4	Software Engineering1: Abstraction and modeling, Diner Bjorner,		
	Springer International edition, 2006.		
R5	Software Engineering concepts, R. Fairley, TMH.		
W1	https://www.edx.org/learn/software-engineering		
W2	https://www.coursera.org/courses?query=software%20engineerin		
	g		

Cours	Course Outcomes: On completion of this course, students can			
CO1	Define and develop a software project from requirement gathering			
	to implementation.			
CO2	Obtain knowledge about principles and practices of software			
	engineering			
CO3	Focus on the fundamentals of software project			
CO4	Focus on modelling a software project			
CO5	Obtain knowledge about estimation and maintenance of software			
	systems			

SOFTWARE TESTING (PROFESSIONAL ELECTIVE – II)				
Subject Code	18CTCTT604X	IA Marks	30	
Number of Lecture	3	Exam	70	
Hours/Week		Marks		
Total Number of Lecture	50	Exam	03	
Hours		Hours		

Course Objectives:

The course objectives of Software Testing are to discuss and make student familiar with the

- 1. To study fundamental concepts in software testing.
- 2. To discuss various software testing issues and solutions in software unit test, integration and system testing.
- 3. To expose the advanced software testing topics, such as object-oriented software testing methods.
- 4. Identify the need of software testing in current industry scenario, techniques and tools in area of software testing.
- 5. Discuss the distinctions between validation and defect testing.

3. Discuss the distinctions between variation and defect testing.			
Unit -1:	Hours		
Introduction Hours Purpose of Testing, Dichotomies, Model for Testing, Consequences of Bugs, Taxonomy of Bugs. Flow graphs and	10		
Path testing: Basics Concepts of Path Testing, Predicates, Path Predicates and Achievable Paths, Path Sensitizing, Path Instrumentation, Application of Path Testing.			
Unit -2:			
Paths, Path products and Regular expressions Path Products & Path Expression, Reduction Procedure, Applications, Regular Expressions & Flow Anomaly Detection. Transaction Flow Testing: Transaction Flows, Transaction Flow Testing Techniques. Dataflow testing: Basics of Dataflow Testing, Strategies in Dataflow Testing, Application of Dataflow Testing.	10		
Unit - 3:			

Domain Testing Domains and Paths, Nice & Ugly Domains, Domain testing, Domains and Interfaces Testing, Domain and Interface Testing, Domains and Testability. Syntax Testing: Why, What and How, A Grammar for formats, Test Case Generation, Implementation and Application and Testability Tips.	08
Logic Based Testing: Overview, Decision Tables, Path Expressions, KV Charts, and Specifications.	
Unit - 4:	
State, State Graphs and Transition Testing State Graphs, Good	
& Bad State	08
Graphs, State Testing, and Testability Tips.	
Graph Matrices and Application: Motivational overview, matrix	
of graph, relations, power of a matrix, node reduction algorithm.	
Unit - 5:	
Software Testing Tools Introduction to Testing, Automated	
Testing, Concepts of Test Automation, Introduction to list of	
tools like Win runner, Load Runner, JMeter, About Win Runner,	
Using Win runner, Mapping the GUI, Recording Test, Working	12
with Test, Enhancing Test, Checkpoints, Test Script Language,	
putting it all together, Running and Debugging Tests, Analyzing	
Results, Batch Tests, Rapid Test Script Wizard.	

Text	(T) / Reference(R) Books:
T1	Software testing techniques – Boris Beizer, Dreamtech, second
	edition.
T2	Software Testing- Yogesh Singh, Camebridge R1 The Craft of
	software testing - Brian Marick, Pearson Education R2 Software
	Testing, 3rd edition, P.C. Jorgensen, Aurbach Publications
	(Dist.by SPD).
R1	Software Testing, N.Chauhan, Oxford University Press.
R2	Introduction to Software Testing, P.Ammann&J.Offutt, Cambridge
	Univ.Press.
R3	Effective methods of Software Testing, Perry, John Wiley, 2nd
	Edition, 1999.

R4	Software Testing Concepts and Tools, P.NageswaraRao,		
	dreamtech Press Department of Computer Science & Engineering		
	Autonomous Syllabus.		
R5	Win Runner in simple steps by Hakeem Shittu, 2007Genixpress		
	R8 Foundations of Software Testing, D.Graham& Others,		
	Cengage.		
W1	https://alison.com/courses/software-testing.		
W2	https://testinginstitute.com/online/online-software-testing-		
	training.php.		

Cours	Course Outcomes: On completion of this course, students can		
CO1	Understand the basic testing procedures.		
CO2	To support in generating test cases and test suites.		
CO3	To test the applications manually by applying different testing methods		
CO4	To test the applications by automation tools.		
CO5	Apply tools to resolve the problems in Real time environment.		

SOFTWARE PROJECT MANAGEMENT (PROFESSIONAL ELECTIVE – II)				
Subject Code	18CTCTT604X	IA Marks	30	
Number of Lecture	3	Exam	70	
Hours/Week		Marks		
Total Number of Lecture	50	Exam	03	
Hours		Hours		

Credits - 03

- 1. To study how to plan and manage projects at each stage of the software development life cycle (SDLC).
- 2. To train software project managers and other individuals involved in software project planning and tracking and oversight in the implementation of the software project management process.
- 3. To understand successful software projects that support organization's strategic goal.

Unit -1:Introduction	Hours
Project, Management, Software Project Management activities,	
Challenges in software projects, stake holders, objectives &	
goals.	
Project Planning: Stepwise planning, Project scope, Project	08
products & deliverables, Project activities, Effort estimation,	Uð
Infrastructure.	
Project Approach: Life cycle models, choosing technology,	
prototyping, life cycle phases, process artefacts, process work	
flows.	
Unit -2:Effort estimation & Activity Planning	
Estimation techniques, Function point analysis, SLOC,	10
COCOMO, Usecasebased estimation, Activity identification	10
approaches, network planning models, critical path analysis	
Unit - 3:Risk management	

Risk categories, Identification, Assessment, Planning and management, PERT technique, Monte Carlo approach.		
Unit - 4:Project management and control		
Creating framework for monitoring and control, progress monitoring, Cost monitoring, Earned value analysis, defects tracking, issues tracking, status reports, Types of resources, Identifying resource requirements, Resource scheduling.	10	
Unit - 5:Software Quality		
Planning quality, defining quality – ISO 9016, Quality measures, quantitative quality management planning, product quality & process quality metrics, statistical process control capability maturity model, enhancing software quality.	12	

Text	Text(T) / Reference(R) Books:		
T1	Software Project Management, Bob Hughes & Mike Cotterell,		
	TATA Mc GrawHill.		
T2	Software Project Management, Walker Royce: Pearson Education, 2005		
Т3	Software Project Management in practice, Pankaj Jalote, Pearson		
R1	Software Project Management, Joel Henry, Pearson Education		
W	https://www.coursera.org/courses?query=software%20project%20		
1	<u>management</u>		
W	https://www.qaiglobalinstitute.com/product/certificate-program-in-		
2	software-project-management/		

Course Outcomes: On completion of this course, students can				
CO1	To match organizational needs to the most effective software			
	development model.			
CO2	To understand basic concepts and issues of software project			
	management			
CO3	To effectively plan and implement the projects through managing			
	people			

CO4	To effectively plan and implement the projects through
	communication and change.
CO5	To select and employ mechanisms for tracking the software
	projects

ARTIFICIAL INTELLIGENCE (PROFESSIONAL ELECTIVE – II)					
Subject Code	18CTCTT604X	IA Marks	30		
Number of Lecture	3	Exam	70		
Hours/Week		Marks			
Total Number of Lecture	50	Exam	03		
Hours		Hours			

Course Objectives:

- To have a basic proficiency in a traditional AI language including an ability to write simple to intermediate programs and an ability to understand code written in that language
- 2. To have an understanding of the basic issues of knowledge representation and blind and heuristic search, as well as an understanding of other topics such as minimax, resolution, etc. that play an important role in AI programs
- 3. To have a basic understanding of some of the more advanced topics of AI such as learning, natural language processing, agents and robotics, expert systems, and planning.

Unit -1: Introduction to artificial intelligence	Hours
Introduction, history, intelligent systems, foundations of AI, applications, tic-tac-tie game playing, development of AI	08
languages, current trends in AI.	
Unit -2: Problem solving: state-space search and control stra	tegies
Introduction, general problem solving, characteristics of problem, exhaustive searches, heuristic search techniques,	10
iterative deepening a*, constraint satisfaction.	
Unit – 3:Problem reduction, Game playing & Logic Concepts	1
Problem Reduction: Introduction, Problem reduction using AO* algorithm, Towers of Hanoi problem, Matrix Multiplication problem game playing, alpha-beta pruning, two-player perfect information games.	10
Unit – 4: Logic Concepts & Knowledge Representation Techn	niques

Logic Concepts: Introduction, propositional calculus, propositional logic, natural deduction system, axiomatic system, semantic tableau system in proportional logic, resolution refutation in proportional logic, predicate logic. Introduction to KR techniques, conceptual dependency theory, script structure, cyc theory, case grammars, semantic web.	10
Unit – 5: Expert systems and its applications	
Introduction phases in building expert systems, expert system versus traditional systems, rule-based expert systems, blackboard systems, truth maintenance systems, application of expert systems, list of shells and tools.	12

Text	Text(T) / Reference(R) Books:		
T1	Artificial Intelligence- Saroj Kaushik, CENGAGE Learning		
T2	Artificial intelligence, A modern Approach, 2nded, Stuart Russel,		
	Peter Norvig, PEA		
T3	Artificial Intelligence- Rich, Kevin Knight, Shiv Shankar B Nair,		
	3rded, TMH		
T4	Introduction to Artificial Intelligence, Patterson, PHI		
R1	Artificial intelligence, structures and Strategies for Complex		
	problem solving, -George F Lugar, 5thed, PEA		
R2	Introduction to Artificial Intelligence, Ertel, Wolf Gang, Springer		
R3	Artificial Intelligence, A new Synthesis, Nils J Nilsson, Elsevier		
R4	AI: A Modern Approach, Stuart Russell and Peter Norvig,		
	Additional Readings: Marr, Bishop, occasionally others		
W1	https://www.edx.org/learn/artificial-intelligence		
W2	https://www.coursera.org/courses?query=artificial%20intelligence		

Cours	Course Outcomes: On completion of this course, students can		
CO1	To introduce basic concepts of AI with its working principles.		
CO2	To understand different kinds of heuristic search algorithms to get		
	feasible solution for AI problems.		
CO3	To understand problem reduction concepts using various problem reduction techniques. (Ex: Problem reduction using AO* algorithm, Towers of Hanoi problem, Matrix Multiplication problem)		

CO4	To understand	various	Knowledge	Representation	(KR)
	techniques				
CO5	To understand different kinds of Expert Systems.				

ENGINEERI NG ECONOMICS AND FINANCIAL MANAGEMENT					
Subject Code	18CMMST6060	IA Marks	30		
Number of Lecture	3	Exam	70		
Hours/Week		Marks			
Total Number of Lecture	50	Exam	03		
Hours		Hours			

Course objectives:

- To understand the concept and nature of Managerial Economics and Concept of Demand and Demand forecasting.
- To understand the concept of Production function, Input Output relationship, Cost Concepts and Concept of Cost-Volume-Profit Analysis.
- To understand the Market structures, significance of various pricing methods and different forms of Business organization and the concepts of Business Cycles.
- To understand the different Accounting Systems preparation of Financial Statements and uses of different tools for performance evaluation
- To understand the concept of Capital, Capitalization, Capital Budgeting and to know the techniques used to evaluate Capital Budgeting proposals by using different methods.

Unit -I: Introduction to Managerial Economics and	
demand Analysis	
Definition of Managerial Economics and Scope-Managerial	
Economics and	
its relation with other subjects-Concepts of Demand-Types-	10
Determents-Law	
of Demand its Exception-Elasticity of Demand-Types and	
Measurement- Demand forecasting and its Methods.	
Unit -II: Production and Cost Analysis	
Production function- Law of Variable proportions- Isoquants	
and Isocost-	
	10
Cobb-Douglas Production function-Economics of Scale-Cost	
Concepts- Cost Volume Profit analysis- Determination of	
Break-Even Point (Simple Problems).	

Unit-III: Introduction To Markets, Pricing Policies & forms	
Organizations and Business Cycles	
Market Structures: Perfect Competition, Monopoly and Monopolistic and Oligopoly – Features – Price,Output Determination – Methods of Pricing: Strategies of Pricing & process for selecting final price Features and Evaluation of Sole Trader – Partnership – Joint Stock Company – State/Public Enterprises and their forms – Business Cycles – Phases of Business Cycle	10
Unit -IV: Introduction to Accounting & Financing Analysis	
Introduction to Double Entry Systems – Journal entry-Ledger-Trail Balance- Final Accounts-Preparation of Financial Statements- Analysis and Interpretation of Financial Statements-Ratio Analysis.	10
Unit-V: Capital and Capital Budgeting	
Capital Budgeting: Meaning of Capital-Capitalization-Meaning of Capital Budgeting-Need for Capital Budgeting-Techniques of	10

Text(Text(T) / Reference(R) Books:	
T1	Dr. A. R. Aryasri – Managerial Economics and Financial Analysis,	
	TMH 2011.	
T2	B. Kuberadu Managerial Economics and Financial Analysis, 1/e, HPH, 2013.	
Т3	B. Kuberadu Managerial Economics and Financial Analysis, 1/e, HPH, 2013	
R1	Ambrish Gupta, Financial Accounting for Management, Pearson Education, New Delhi.	
R2	H. Craig Peterson & W. Cris Lewis, Managerial Economics, PHI, 4th Ed.	
R3	Koontz and weihrich: Essentials of management, TMH 2011	
R4	Seth& Rastogi: Global management systems, cengage learning,delhi,2011	

R5	V. Maheswari: Managerial Economics, SultanChand.		
R6	Dr. B. Kuberudu and Dr. T. V. Ramana: Managerial		
	Economics &Financial Analysis, Himalaya		
	Publishing House2011.		
R7	Vanitha Agarwal : Managerial Economics, Pearson Publications 2011.		
R8	Sanjay Dhameja: Financial Accounting for Managers, Pearson.		
R9	Maheswari : Financial Accounting, Vikas Publications.		
R10	S. A. Siddiqui & A. S. Siddiqui: Managerial Economics and		
	Financial Analysis, New Age International Publishers, 2012.		

Course Outcomes: On completion of this course, students can		
CO1	Students are equipped with the knowledge of managerial	
	economics and estimating demand for a product.	
CO2	Students understand Production and Cost concepts, estimating	
	Cost Break even Analysis.	
CO3	Students are equipped with the knowledge on Markets and Pricing	
	methods along with Business Cycles.	
CO4	Students are able to understand Accounting Concepts and Prepare	
	Financial Statements-	
	Analysis	
CO5	Students are able to analyse various investment project	
	proposals with the help of Capital Budgeting techniques.	

COMPUTER NETWORKS LAB			
Subject Code	18CTCTL6070	IA Marks	15
Number of Tutorial	03(P)	Exam Marks	35
Hours/Week			
Total Number of Practice	36	Exam Hours	03
Hours			

Credits - 1.5

List of Programs

Exercise1

Understanding and using of commands like ifconfig, netstat, ping, arp, telnet, ftp, finger, traceroute, whoisetc. Usage of elementary socket system calls (socket (), bind(), listen(), accept(),connect(),send(),recv(),sendto(),recvfrom()).

Exercise2

Implementation of Connection oriented concurrent service (TCP).

Exercise3

Implementation of Connectionless Iterative time service (UDP).

Exercise4

Implementation of Select system call.

Exercise5

Implementation of gesockopt (), setsockopt () system calls.

Exercise6

Implementation of getpeername () system call.

Exercise7

Implementation of remote command execution using socket system calls.

Exercise8

Implementation of Distance Vector Routing Algorithm.

Exercise9

Implementation of SMTP.

Exercise10

Implementation of FTP.

Exercise11

Implementation of HTTP.

Exercise12

Implementation of RSA algorithm.

Note: Implement programs 2 to 7 in C and 8 to 12 in JAVA.

Cours	Course Outcomes: On completion of this course, students can	
CO1	Understand and explain the basic concepts of Grid Computing.	
CO2	Explain the advantages of using Grid Computing within a given	
	environment	
CO3	Prepare for any upcoming Grid deployments and be able to get started with a potentially available Grid setup.	
CO4	Discuss some of the enabling technologies e.g. high-speed links	
	and storage area networks.	
CO5	Build computer grids.	

DATA WAREHOUSING AND DATA MINING LAB			
Subject Code	18CTCTL6080	IA Marks	15
Number of Tutorial	03(P)	Exam Marks	35
Hours/Week			
Total Number of Practice	36	Exam Hours	03
Hours			

Credits - 1.5

List of Experiments

Note: Use python library scikit-learn wherever necessary

Exercise1

Demonstrate the following data preprocessing tasks using python libraries.

- a) Loading the dataset
- b) Identifying the dependent and independent variables c) Dealing with missing data

Exercise2

Demonstrate the following data preprocessing tasks using python libraries.

- a) Dealing with categorical data
- b) Scaling the features
- c) Splitting dataset into Training and Testing Sets

Exercise3

Demonstrate the following Similarity and Dissimilarity Measures using python

- a) Pearson's Correlation
- b) Cosine Similarity
- c) Jaccard Similarity
- d) Euclidean Distance
- e) Manhattan Distance

Exercise4

Build a model using linear regression algorithm on any dataset.

Exercise5

Build a classification model using Decision Tree algorithm on iris dataset

Exercise6

Apply Naïve Bayes Classification algorithm on any dataset

Exercise7

Generate frequent itemsets using Apriori Algorithm in python and also generate association rules for any market basket data.

Exercise 8

Apply K- Means clustering algorithm on any dataset.

Exercise9

Apply Hierarchical Clustering algorithm on any dataset.

Exercise10

Apply DBSCAN clustering algorithm on any dataset.

Cours	Course Outcomes: On completion of this course, students can		
CO1	CO1 Apply preprocessing techniques on real world datasets		
CO2	Apply apriori algorithm to generate frequent itemsets.		
CO3	Apply Classification and clustering algorithms on different		
	datasets.		

Soft Skills & Aptitude Builder – 2			
Subject Code	18CMMAT6090	IA Marks	15+15
Number of Lecture	2	Exam	35+35
Hours/Week		Marks	
Total Number of Lecture	32	Exam	3
Hours		Hours	
	Credits – 2		
	ion A,Soft Skills		1
Unit – 1: Communicative Co			Hours
Verbal Reasoning: Reading Co			
Sentence Equivalence Spotting		of	
Sentences, Parallelism in Struc			6
E-Mail Etiquette, Reporting No	ews Activity: Comp	leting	
Exercises			
Unit 2: Career and Employal			
What is a Career: Career vs Jol			
vs Strengths, Spotting Skills/R			
Meeting the Expectation of you			6
Skills with the Required Skills		Preparing	U
for Interviews & Structuring A			
Activity: Resume Building, Int	terviews		
Section B,Aptitude Builder			
Unit – 3: Time and Work			
Pipes and Cisterns: Problems on Unitary method, Relation			
between Men, Days, Hours and Work, Problems on Man-Day-			
Hours Method, Problems on A	Iternate Days, Probl	ems on	
Pipes and Cisterns.			
Time, Distance and Speed, P			
Streams: Relation between Sp			
Converting km/h into m/s and vice versa, Problems on			
Average Speed, Problems on Relative Speed, Problems on		6	
Circular Tracks, Problems on Races			
Problems on Trains: Two Trains Moving in Opposite			
Direction, Two Trains Moving in same Direction, A Train			
Crossing a Stationary Object of a Given Length like a Platform			
or Bridge, A Train Crossing a Stationary Object like a Pole or a			
Man Boats and Streams: Time Based, which can be			
considered as a Point Object Speed Based, Distance Based,			
Average Speed Based			
Unit – 4: Logical and Analyti	ical Reasoning		
Cinc 4. Dogical and Allalyti	car reasoning		1

G	A C I			
	ng Arrangement: Linear Arrangement, Circular			
	Arrangement, Tabler, Triangular Arrangement, Complex			
	Arrangement.			
	Clocks: Finding the Angle When the Time is Given, Finding			
	ime When the Angle is Known, Relation between Angles,			
	tes and Hours, Position of Hands of the Clock, Time			
	ed or Lost by the Clock, Mirror /Water Image-based Time.			
	ndars: Definition of a Leap Year, Finding the Number of			
	Days, Framing the Year Code for Centuries, Finding the	_		
	of any Random Calendar Date	7		
	gisms: Finding the Conclusions using Venn Diagram			
	od, Finding the Conclusions using Syllogism Method			
	le Interest: Definitions, Problems on Interest and			
	unt, Problems when Rate of Interest and Time Period are			
	erically Equal			
	pound Interest: Definition and Formula for Amount in			
	bound Interest, Difference between Simple Interest and			
	bound Interest for 2 Years on the Same Principle and			
	Period.			
	- 5: Permutations, Probability, Areas and Volumes			
	Definition of permutation , Problems on Permutations ,			
	Definition of Combinations , problems on Combinations			
	Probability: Definition of Probability, Problems on Coins,			
	Problems on Dice, Problems on Deck of Cards , Problems on			
Years		7		
	suration - 2D:Formulas for Areas, Formulas for Volumes			
	fferent Solids, Problems on Areas			
	Mensuration - 3D: Problems on Volumes, Problems on			
	ce Areas			
	(T) / Reference (R) Books:			
	For Units 1 & 2			
T1	T1 Enhance Your Employability Skills, David Winter and Laura			
Brammar, University of London				
T2 R.S. Agarwal, Verbal & Non-Verbal Reasoning, S. Chand &				
Co., Latest ed. 2003				
R2	R2 How to Prepare for Verbal Ability and Reading			
	Comprehension, Arun Sharma, Meenakshi Upadhay, Mc			
Eor I	Graw Hill For Units 3, 4, & 5			
T1	R S Agarwal, S Chand, 'Quantitative Aptitude'			
T2	R S Agarwal, S Chand, Quantitative Aptitude R S Agarwal, S.Chand, 'A modern approach to Logical			
12	reasoning'			
	reasoning			

R1	Overtitative Antitude for CAT Dr. Amm Champs	
	Quantitative Aptitude for CAT By Arun Sharma	
R2	GL Barrons, Mc Graw Hills, Thorpe's verbal reasoning, LSAT	
	Materials	
Cour	se Outcomes: On completion of this course, students can	
Section	on A: Soft Skills	
CO 1	learn and practice effective communication skills	
CO 2	develop broad career plans, evaluate the employment	
	market, and become industry ready	
Section	on B: Aptitude Builder	
CO 3	develop accuracy on time and distance and units related	
	solutions	
CO 4	solve the real-time problems for performing job functions	
	easily	
CO 5	solve problems related to permutations and combinations,	
	probability, areas and volumes	

VII SEMESTER (IV-I)

DATA ANALYTICS			
Subject Code	18CTCTT7010	IA Marks	30
Number of Lecture	3	Exam	70
Hours/Week		Marks	
Total Number of Lecture	50	Exam	03
Hours		Hours	

Course Objectives:

The learning objectives of this course are:

 To provide a complete theoretical knowledge of data pre-processing and analysis. To give practical awareness to data analytics using a Tool.

Unit -1: Introduction to Big Data	Hours
Big Data and its importance, Characteristics, Big data analytics,	
Basic requirements, Big data applications, Map Reduce	08
framework, Algorithms using map reduce.	00
NoSQL Databases: Key-value databases, Column-family	
databases, Document databases, Graph databases	
Unit -2 : Apache Hadoop	
Introduction, System principle, Architecture, Hadoop	
distributed file system, Hadoop Map Reduce, YARN, Operation	
modes, Hadoop Installation, Cluster creation, Hadoop	10
commands, HDFS commands, YARN commands, Map	
Reduce commands, Moving Data in and out of Hadoop, Hadoop	
programming.	
Unit – 3: Hadoop Ecosystem	
Introduction to Pig, Installation, Execution, Pig Latin: Basics,	
Data types, Building blocks, Operators, Functions, Example	
Scripts. Introduction to Hive: Installing and Running Hive,	10
Hive QL, Tables, Querying data, User defined functions,	
Partitioning, Joins, Simple projects. Overview of Spark:	
Zookeeper, and other Hadoop Ecosystem tools.	
Unit – 4 : Data Analysis Techniques	
Linear and logistic regression modelling, Naive Baye's	
classifier, Support vector machine, Neural networks, Principal	
component analysis, Linear Discriminant Analysis, K Nearest	10
Neighbor, Decision Trees, Fuzzy logic, Clustering Techniques	
: Hierarchical, agglomerative, and K- Means.	

Unit – 5 : Introduction to R	
R Installation, Basic statements of R, Importing and exporting data, Ordered and unordered factors, Arrays and matrices, Lists and data frames, Reading data from files, Data visualization, Probability distributions, Statistical models in R, Manipulating objects, Data Pre-processing, Feature selection, Clustering, Classification and regression. Case Studies: Social network analysis, Text analysis, Marketing analysis.	12

Text	Text(T) / Reference(R) Books:		
T1	Understanding Big data, Chris Eaton, Dirk deroos et al, McGraw		
	Hill, 2012		
T2	Hadoop: The Definitive Guide, Tom White, 3rd Edition, O'reilly,		
	2012		
T3	Beginning R - The Statistical Programming Language, Mark		
	Gardener, John Wiley & Sons, Inc., 2012		
R1	Professional Hadoop Solutions, Boris lublinsky, Kevin t. Smith,		
	Alexey Yakubovich, Wiley, 2015		
R2	Principles of Data Mining, David Hand, Heiki Mannila, Padhria		
	Smyth, PHI 2013		
R3	Big Data Analytics: Disruptive Technologies for Changing the		
	Game, Arvind Sathi, 1st Edition, IBM Corporation, 2012.		
R4	An Introduction to R, W. N. Venables, D. M. Smith and the R		
	Core Team,		
R5	Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman,		
	Jeffrey D. Ullman, Cambridge University Press, 2014.		
R6	Data Mining: Concepts and Techniques, Jiawei Han and Micheline		
	Kamber, Morgan Kaufmann Publishers, Third Edition, 2010.		
W1	https://www.coursera.org/browse/data-science/data-analysis		
W2	https://www.edx.org/learn/data-analysis		

Cours	Course Outcomes: On completion of this course, students can			
CO1	Categorize and summarize big data and its importance			
CO2	Differentiate various big data technologies like Hadoop,			
	MapReduce.			
CO3	Differentiate various big data technologies like Hadoop			
	Ecosystem, R, and No-SQL			
CO4	Apply tools and techniques to analyze big data			
CO5	Earn tips and tricks for big data use cases and solutions.			

DESIGN PATTERNS (PROFESSIONAL ELECTIVE – III)			
Subject Code	18CTCTT702X	IA Marks	30
Number of Lecture	3	Exam	70
Hours/Week		Marks	
Total Number of Lecture	50	Exam	03
Hours		Hours	

Course Objectives:

- 1. Understand the various design patterns and choose design pattern for their problem.
- 2. Study and design creational design patterns for sloving various software design problems.
- 3. Study and Construct Structural design patterns for real world reoccurring software problems.
- 4. Study and build behavioral design patterns for real world reoccurring software problems.
- To construct design pattern for an application Document Editor.

Unit -1: Introduction	Hours
What Is a Design Pattern?, Design Patterns in Smalltalk MVC,	
Describing	09
Design Patterns, The Catalogue of Design Patterns, Organizing	
the Catalogue.	
Unit -2:Usage of Design patterns	
How Design Patterns Solve Design Problems, How to Select a	09
Design Pattern, How to Use a Design Pattern.	
Unit - 3:Creational Patterns	
Abstract Factory, Builder, Factory Method, Prototype,	10
Singleton.	
Unit - 4:Structural Pattern	
Adapter, Bridge, Composite, Decorator, Façade, Flyweight,	10
Proxy.	10
Unit - 5:Behavioral Patterns	
Chain of Responsibility, Command, Interpreter, Iterator,	12
Mediator, Memento, Observer.	12

Text	Text(T) / Reference(R) Books:		
T1	Design Patterns by Erich Gamma, Pearson Education.		
R1	Satzinger: Object Oriented Analysis and Design, CENGAGE.		
W1	https://www.javatpoint.com/design-patterns-in-java		
W2	https://www.udemy.com/topic/design-pattern/		

Cours	Course Outcomes: On completion of this course, students can		
CO1	Able to understand the software industries design practices through design patterns.		
CO2	Identify the appropriate design patterns to solve object oriented design problems.		
CO3	Develop the appropriate Creational Design Patterns solution to the real world software design problems.		
CO4	Ability to identify and implement the appropriate Structural Design Patterns for the real world software design problem.		
CO5	Choose and Construct the appropriate Behavioral Design Pattern for the real world software design problem.		

CYBER SECURITY (PROFESSIONAL ELECTIVE – III)			
Subject Code	18CTCTT702X	IA Marks	30
Number of Lecture	3	Exam	70
Hours/Week		Marks	
Total Number of Lecture	50	Exam	03
Hours		Hours	

Credits - 03

- 1. The Cyber security Course will provide the students with foundational Cyber Security principles, Security architecture, risk management, attacks, incidents, and emerging IT and IS technologies.
- 2. Students will gain insight into the importance of Cyber Security and the integral role of Cyber Security professionals.

Unit -1: Introduction to Cybercrime	Hours
Introduction, Cybercrime: Definition and Origins of the Word, Cybercrime and Information Security, Who are Cybercriminals?	
, Classifications of Cybercrimes, Cybercrime: The Legal	08
Perspectives, Cybercrimes: An Indian Perspective, Cybercrime	
and the Indian ITA 2000, A Global Perspective on Cybercrimes,	
Cybercrime Era: Survival Mantra for the Netizens	
Unit -2 : Cyber offenses	
How Criminals Plan Them –Introduction, How Criminals Plan	
the Attacks, Social Engineering, Cyber stalking, Cyber cafe and	
Cybercrimes, Botnets: The Fuel for Cybercrime, Attack Vector	
Cloud Computing. Cybercrime Mobile and Wireless	
Devices: Introduction, Proliferation of Mobile and Wireless	
Devices, Trends in Mobility, Credit Card Frauds in Mobile and	10
Wireless Computing Era, Security Challenges Posed by Mobile	10
Devices, Registry Settings for Mobile Devices, Authentication	
Service Security, Attacks on Mobile/Cell Phones, Mobile	
Devices: Security Implications for Organizations,	
Organizational Measures for Handling Mobile, Organizational	
Security Policies and Measures in Mobile Computing Era,	
Laptops.	
Unit – 3: Tools and Methods Used in Cybercrime	

Introduction, Proxy Servers and Anonymizers, Phishing, Password Cracking, Key loggers and Spywares, Virus and Worms, Trojan Horses and Backdoors, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks, <i>Phishing and Identity Theft:</i> Introduction, Phishing, Identity Theft (IDTheft)	10
Unit – 4: Cybercrimes and Cyber security	
Why Do We Need Cyber laws: The Indian Context, The Indian IT Act, Challenges to Indian Law and Cybercrime Scenario in India, Consequences of Not Addressing the Weakness in Information Technology Act, Digital Signatures and the Indian IT Act, Information Security Planning and Governance, Information Security Policy Standards, Practices, The information Security Blueprint, Security education, Training and awareness program, Continuing Strategies?	10
Unit – 5: Understanding Computer Forensics	
Introduction, Historical Background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Network Forensics, Approaching a Computer Forensics Investigation, Computer Forensics and Steganography, Relevance of the OSI 7 Layer Model to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats, Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Techniques, Forensics Auditing, Ant forensics	12

Text(T) / Reference(R) Books:	
T1	Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Nina Godbole, Sunit Belapure, Wiley.
T2	Principles of Information Security, MichealE.Whitman and
	Herbert J.Mattord, Cengage Learning.
R1	Information Security, Mark Rhodes, Ousley, MGH.
W1	https://www.edx.org/learn/cybersecurity
W2	https://www.cyberdegrees.org/resources/free-online-courses/

Cours	Course Outcomes: On completion of this course, students can		
CO1	Cyber Security architecture principles		
CO2	Identifying System and application security threats and vulnerabilities		
CO3	Identifying different classes of attacks		
CO4	Cyber Security incidents to apply appropriate response		
CO5	Describing risk management processes and practices, Evaluation of decision making outcomes of Cyber Security scenarios		

BLOCK-CHAIN TECHNOLOGIES (PROFESSIONAL ELECTIVE – III)			
Subject Code	18CTCTT702X	IA Marks	30
Number of Lecture	3	Exam	70
Hours/Week		Marks	
Total Number of Lecture	50	Exam	03
Hours		Hours	

Course Objectives:

- 1. To assess blockchain applications in a structured manner.
- 2. To impart knowledge in block chain techniques and able to present the concepts clearly and structured.
- 3. To get familiarity with future currencies and to create own crypto token.

Unit -1: Introduction	Hours
Overview of Block chain, public ledgers, bitcoin, smart contracts, block in a block chain, transactions, distributed consensus, public vs private block chain, understanding crypto currency to block chain, permissioned model of block chain,	08
overview of security aspects of block chain, cryptographic hash function, properties of a hash function, hash pointer and Merkle tree, digital signature, public key cryptography, a basic crypto currency.	
Unit -2 :Understanding block chain with crypto currency	II.
: Creation of coins, payments and double spending, bitcoin scripts, bitcoin P2P network, transaction in bitcoin network, block mining, block propagation and block relay, distributed consensus in open environments, consensus in a bitcoin network, Proof of Work (PoW)- Basic Introduction, hashcash PoW, Bitcoin PoW, Attacks on PoW and the monopoly problem, Proof of Stake, Proof of burn and proof of elapsed time, the life of a bitcoin miner, Mining- Difficulty, mining pool.	10
Unit – 3:Permissioned Block Chain	
Permissioned model and usecases, design issues for permissioned block chains, execute contracts, state machine replication, overview of consensus models for permissioned block chain, Distributed consensus in closed environment, paxos, RAFT consensus, Byzantine general problem, Byzantine	10

fault tolerance system, Lamport-Shostak-Pease BFT algorithm,		
BFT over Asynchronous systems.		
Unit – 4:Enterprise application of Block chain		
Cross border payments, Know Your Customer, Food security, Mortgage over block chain, Block chain enabled trade, trade finance network, supply chain financing, identity on block chain.	10	
Unit – 5:Block chain application development		
Hyperledger fabric- architecture, identities and policies, membership and access control, channels, transaction validation, writing smart contract using Hyperledger fabric, writing smart contract using Ethereum, overview of Ripple and Corda.	12	

Text	Text(T) / Reference(R) Books:		
T1	Block Chain: Blueprint for a new economy, Melanie Swan,		
	O'Reilly, 2015.		
T2	Block Chain: The Block Chain for Beginners- Guide to Block		
	Chain Technology and Leveraging Block Chain Programming,		
	Josh Thompsons		
R1	Block Chain Basics, Daniel Drescher, Apress; 1st edition, 2017		
R2	Block Chain and Crypto Currencies, Anshul Kaushik, Khanna		
	Publishing House, Delhi.		
R3	Mastering Block Chain: Distributed Ledger Technology,		
	Decentralization and Smart Contracts Explained, Imran Bhashir,		
	Packt Publishing.		
W1	https://www.edx.org/learn/blockchain		
W2	https://www.coursera.org/courses?query=blockchain		

Cours	Course Outcomes: On completion of this course, students can		
CO1	Understand block chain technology.		
CO2	Develop block chain-based solutions		
CO3	Write smart contract using Hyperledger Fabric and Ethereum frameworks.		
CO4	CO4 Build and deploy block chain application for on premise and cloud-based architecture.		
CO5	Integrate ideas from various domains and implement them.		

SOFTWARE QUALITY ASSURANCE (PROFESSIONAL ELECTIVE – IV)			
Subject Code	18CTCTT703X	IA Marks	30
Number of Lecture	3	Exam	70
Hours/Week		Marks	
Total Number of Lecture	50	Exam	03
Hours		Hours	

Course Objectives:

The main objective of the course is to impart students the knowledge and learning about software quality and software testing.

- This course introduces the concepts and methods required for effective and efficient SQA.
- It aims to develop a broad understanding of SQA processes from planning until execution.
- 3. Students will learn in detail about various quality assurance models and understand the audit and assessment procedures to achieve quality.
- 4. Evaluate the system based on the chosen quality model.
- **5.** Students will learn in detail about software quality assurance standardization.

Unit -1: FUNDAMENTALS OF SOFTWARE QUALITY		
ASSURANCE		
The Role of SQA, SQA Plan, SQA considerations, SQA people,	09	
Quality, Management, Software Configuration Management.		
Unit -2: MANAGING SOFTWARE QUALITY		
Managing Software Organizations, Managing Software Quality,	09	
Defect Prevention, Software Quality Assurance Management.		
Unit - 3: SOFTWARE QUALITY ASSURANCE METRICS		
Software Quality, Total Quality Management (TQM), Quality		
Metrics, Software Quality Metrics Analysis.		
Unit - 4: SOFTWARE QUALITY PROGRAM		
Software Quality Program Concepts, Establishment of a		
Software Quality Program, Software Quality Assurance	10	
Planning, An Overview, Purpose & Scope.		
Unit - 5: SOFTWARE QUALITY ASSURANCE		
STANDARDIZATION		

Software Standards-ISO 9000 Quality System Standards,	
Capability Maturity Model and the Role of SQA in Software	
Development Maturity,	
SEI CMM Level 5, Comparison of ISO 9000 Model with SEI's	
CMM.	

Text	Text(T) / Reference(R) Books:		
T1	Software Quality, Mordechai Ben-Menachem / Garry S Marliss,		
	Vikas Publishing House, Pvt, Ltd., New Delhi.		
T2	Managing the Software Process, Watts S Humphrey, Pearson		
	Education Inc.		
R1	Handbook of Software Quality Assurance, Gordon G Schulmeyer,		
	Third Edition, Artech House Publishers 2007.		
R2	Software Quality Assurance: Principles and Practice, Nina S		
	Godbole, Alpha Science International, Ltd, 2004.		
W1	V1 https://www.udemy.com/software-quality-assurance/		
W2	https://www.coursera.org/courses?query=quality%20assurance		
Cour	Course Outcomes: On completion of this course, students can		
CO1	To learn Software quality factors.		
CO2	To learn Common software testing methodologies.		
CO3	To learn about project process control.		
CO4	To learn about software metrics and standardizations.		
CO5	To learn about certifications.		

	& SENSOR NETWORKS	`	
Subject Code	SIONAL ELECTIVE – IV 18CTCTT703X	IA Marks	30
	3		
Number of Lecture	3	Exam	70
Hours/Week		Marks	
Total Number of Lecture	50	Exam	03
Hours		Hours	
	Credits – 03		
Course Objectives:			
The learning objectives of the	nis course are:		
• Upon completion of the	his course, students will be	able to kn	ow the
characteristics of adhe	oc and sensor networks, stu	ıdy various	MAC
	and provide security to MA	NET and V	WSN.
Unit -1: Ad-HOC Introduc	ction		Hours
Issues in Ad-Hoc Wireless	,		08
Classifications of MAC protocols, Multi-channel MAC &			vo
Power control MAC protoco	ol.		
Unit -2 :Ad-HOC Network	routing & TCP		
Issues, Classifications of 1	routing protocol, Hierarchi	cal and	
Power aware, Multicastrouting, Classifications, Tree based,			10
Mesh based. Ad Hoc Transport Layer Issues, TCP Over Ad			10
Hoc, Feedback based, TCP with explicit link, TCP Bus, Ad Hoc			
TCP, and Split TCP.			
Unit - 3:WSN and MAC			
Introduction, Sensor Network Architecture, Datadissemination,		nination,	10
Gathering. MAC Pro	otocols, self-organizing,	Hybrid	10
TDMA/FDMA and CSMA	based MAC.		
Unit - 4:WSN Routing, Lo	calization & QOS		
Issues in WSN routing,OLS	R, AODV. Localization, Inc.	loor and	40
Sensor Network, Localization			10
Unit - 5:Mesh Networks	-	l .	
Necessity for Mesh Netw	orks, MAC enhancements	s, IEEE	
802.11s Architecture, Oppo			
and Auto configuration		-	12

and Auto configuration Capacity, Models, Fairness, Heterogeneous Mesh Networks, Vehicular Mesh Networks.

Text	Text(T) / Reference(R) Books:		
T1	Mobile Ad hoc Networking, Marco Conti, Silvia Giordano, Ivan		
	Ivan Stojmenovic Stefano Basagni, Wiley, Second Edition, 2015		
T2	Ad Hoc Wireless Networks - Architectures and Protocols,		
	C.SivaRamMurthy and B.Smanoj, Pearson Education, 2006.		
R1	Ad hoc Networking, Perkins, Pearson Education, 2008.		
R2	Wireless Sensor Networks, Feng Zhao and Leonidas Guibas,		
	Morgan Kaufman		
	Publishers, 2004.		
R3	Ad Hoc MobileWireless Networks, C.K.Toh,		
R4	Wireless Mesh Networking, Thomas Krag and Sebastin Buettrich,		
	O'Reilly Publishers, 2007.		
W1	https://www.coursera.org/lecture/iot/lecture-3-2-manets-ED6nz		
W2	https://nptel.ac.in/courses/106105160/		

Cours	Course Outcomes: On completion of this course, students can		
CO1	Explain the concepts, network architectures and applications of ad		
	hoc and wireless sensor networks		
CO2	Explain the various adhoc routing protocols and transport layer		
	mechanisms		
CO3	Classify the design issues and different categories of MAC		
	protocols		
CO4	Illustrate the issues of routing in wsn and QoS related performance		
	measurements		
CO5	Comprehend the various sensor network Platforms, tools and		
	applications		

NEURAL NETWORKS AND SOFT COMPUTING (PROFESSIONAL ELECTIVE – IV)				
Subject Code	18CTCTT703X	IA Marks	30	
Number of Lecture	3	Exam	70	
Hours/Week		Marks		
Total Number of Lecture	50	Exam	03	
Hours		Hours		

Course Objectives:

- 1. To have a detailed study of neural networks, Fuzzy Logic and uses of Heuristics based on human experience.
- 2. To Familiarize with Soft computing concepts.
- 3. To introduce the concepts of genetic algorithm and its applications to soft computing using some applications.

Unit -1: NEURAL NETWORKS – I	
Introduction and Architecture: Neuron, Nerve Structure and	
Synapse, Artificial Neuron and its Model, Activation Functions,	
Neural Network Architecture: Single Layer and Multilayer Feed	12
Forward Networks, Recurrent Networks. Various Learning	
Techniques; Perception and Convergence Rule, Auto-	
Associative and Hetro-Associative Memory.	
Unit -2: NEURAL NETWORKS – II	
Back Propagation Networks: Architecture: Perceptron Model,	
Solution, Single Layer Artificial Neural Network, Multilayer	10
Perception Model; Back Propagation Learning Methods, Effect	10
of Learning Rule Co-Efficient ;Back Propagation Algorithm,	
Factors Affecting Back Propagation Training, Applications.	
Unit – 3: FUZZY LOGIC – I	
Introduction: Basic Concepts of Fuzzy Logic, Fuzzy Sets and	
Crisp Sets, Fuzzy Set Theory and Operations, Properties of	10
Fuzzy Sets, Fuzzy and Crisp Relations, Fuzzy to Crisp	
Conversion.	
Unit – 4: FUZZY LOGIC – II	
Fuzzy Membership, Rules: Membership Functions, Interference	
in Fuzzy Logic, Fuzzy If-Then Rules, Fuzzy Implications and	10
Fuzzy Algorithms, Fuzzifications and Defuzzificataions, Fuzzy	10
Controller, Industrial Applications.	

Unit – 5: GENETIC ALGORITHM	
Basic Concepts, Working Principle, Procedures of GA, Flow Chart of GA, Genetic Representations, (Encoding) Initialization and Selection, Genetic Operators, Mutation, Generational Cycle, Applications.	8

Tex	t(T) / Reference(R) Books:			
T1	S. Rajasekaran and G.A. VijayalakshmiPai, —Neural Networks,			
	Fuzzy Logic and Genetic Algorithm: Synthesis and Applications,			
	Prentice Hall of India, 2003.			
T2	N.P.Padhy, Artificial Intelligence and Intelligent Systemsl, Oxford			
	University Press, 2005.			
T3	J.S.R. Jang, C.T. Sun and E. Mizutani, -Neuro-Fuzzy and Soft			
	Computing, Pearson Education, 2004.			
R1	SimanHaykin, —Neural Networks, Prentice Hall of India, 1999.			
R2	Timothy J. Ross, —Fuzzy Logic with Engineering Applications,			
	Third Edition, Wiley India, 2010.			
R3	S.Y.Kung, —Digital Neural Network, Prentice Hall International,			
	1993.			
R4	Aliev.R.A and Aliev,R.R, — Soft Computing and its Application,			
	World Scientific Publishing Company, 2001.			
R5	Wulfram Gerstner and WennerKristler, —Spiking Neural			
	Networks, Cambridge University Press.			
R6	Bart Kosko, —Neural Networks and Fuzzy Systems: Dynamical			
	Systems Application to Machine Intelligence, Prentice Hall, 1992.			

Cours	Course Outcomes: On completion of this course, students can		
CO1	Awake the importance of tolerance of imprecision and uncertainty		
	for design of robust and lowcost intelligent machines.		
CO2	Acquire knowledge of soft computing theories fundamentals.		
CO3	Design program systems using approaches of these theories for		
	solving various real-world problems.		
CO4	Try and integrate the knowledge of neural networks, fuzzy logic, genetic algorithms, probabilistic reasoning, rough sets, chaos, hybrid approaches (combinations of neural networks, fuzzy logic		
	and genetic algorithms).		

COMPILER DESIGN (PROFESSIONAL ELECTIVE – V)				
Subject Code	18CTCTT704X	IA Marks	30	
Number of Lecture	3	Exam	70	
Hours/Week		Marks		
Total Number of Lecture	50	Exam	03	
Hours		Hours		

Course Objectives:

- 1. To study the various phases in the design of a compiler
- 2. To understand the design of top-down and bottom-up parsers
- 3. To understand syntax directed translation schemes
- 4. To introduce LEX and YACC tools
- 5. To learn to develop algorithms to generate code for a target machine

Unit-1: Introduction and Lexical Analysis		
Introduction to Language Processing, Structure of a compiler the evaluation of Programming language, The Science of building a Compiler application of Compiler Technology, Programming Language Basics. Lexical Analysis: The role of lexical analysis buffing, specification of tokens. Recognitions of tokens the lexical analyzer generator, The Role of a parser, Context free Grammars Writing A grammar.		
Unit – 2: Syntax Analysis		
Syntax analysis-Role of parser-Classification of parsing techniques-Top down parsing-First and Follow-LL(1) Grammars-Non recursive predictive parsing- Error Recovery in predictive parsing. Introduction to Simple LR- Why LR parsers- Model Shift-Reduce parser, Difference between LL and LR parser.		
Unit -3: Parser and STDs		
Simple LR Parser, Construction of SLR parsing tables. More powerful LR parsers, Construction of CLR(1), LALR parsing tables, Dangling-ELSE Ambiguity, Error recovery in LR parsing. Syntax Directed Translations (SDTs): Definition, Evaluation order of semantic rules, Applications.		

Unit-4:Runtime Environment	
Storage organization, Stack allocation, access to non-local data, heap management, parameter passing mechanisms. Intermediate Code: Three address code, quadraples, triples, abstract syntax trees basic blocks, Flow graphs.	
Unit- 5: Optimization	
Common Subexpression elimination, Constant folding, Copy propagation, Dead code elimination, strength reduction, loop optimization, Machine Independent Optimization. The principle sources of Optimization, peephole Optimization, Introduction to Data flow Analysis.	10

Text(T) / Reference(R) Books:			
T1	Compilers, Principles Techniques and Tools, 2nd edition, Alfred		
	V Aho, Monical S. Lam, Ravi Sethi Jeffery D. Ullman, Pearson,		
	2007.		
T2	Compiler Design, K. Muneeswaran, OXFORD		
T3	Principles of Compiler Design, 2nd edition, Nandhini Prasad,		
	Elsevier		
R1	Compiler Construction, Principles and Practice, Kenneth C		
	Louden, CENGAGE		
R2	Implementations of Compiler, A New approach to Compilers		
	including the algebraic methods, Yunlinsu, SPRINGER		
R3	Engineering a Compiler, 2 nd edition, Keith D. Cooper & Linda		
	Torezon, Morgan Kaufman.		
W1	https://onlinecourses.nptel.ac.in/noc19_cs01/preview		
W2	https://www.coursera.org/courses?query=compilers		

Course Outcomes: On completion of this course, students can		
CO1	Acquire knowledge in different phases and passes of Compiler, and specifying different types of tokens by lexical analyzer, and also able to use the Compiler tools like LEX, YACC, etc.	
CO2	Parser and its types i.e. Top-down and Bottom-up parsers.	
CO3	Construction of LL, SLR, CLR and LALR parse table.	
CO4	Syntax directed translation, Intermediate code generation	
CO5	Techniques for code optimization.	

CRYPTOGRAPHY AND NETWORK SECURITY (PROFESSIONAL ELECTIVE - V)				
Subject Code	18CTCTT704X	IA Marks	30	
Number of Lecture	3	Exam	70	
Hours/Week		Marks		
Total Number of Lecture	50	Exam	03	
Hours		Hours		

Course Objectives:

- 1. Classical systems, symmetric block ciphers (DES, AES, other contemporary symmetric ciphers)
- 2. Public-key cryptography (RSA, discrete logarithms),
- 3. Algorithms for factoring and discrete logarithms, cryptographic protocols, hash functions, authentication, key management, key exchange, signature schemes,
- 4. Email and web security, viruses, firewalls, digital right management, and other topics.

Unit -1: Basic Principles	Hours	
Security Goals, Cryptographic Attacks, Services and Mechanisms, Mathematics of Cryptography, Symmetric Encryption, Mathematics of Symmetric Key Cryptography.	08	
Unit -2:Symmetric Encryption		
Introduction to Modern Symmetric Key Ciphers, Data Encryption Standard, Advanced Encryption Standard.	10	
Unit - 3:Asymmetric Encryption		
Mathematics of Asymmetric Key Cryptography, Asymmetric Key Cryptography.	10	
Unit - 4:		
Message Integrity and Message Authentication, Cryptographic Hash Functions, Digital Signature, Key Management.	10	
Unit - 5:		
Security at application layer: PGP and S/MIME, Security at the Transport Layer: SSL and TLS.Security at the Network Layer: IPSec, System Security.		

Text	(T) / Reference(R) Books:		
T1	Cryptography and Network Security, Behrouz A Forouzan,		
	Debdeep Mukhopadhyay, (3e) Mc Graw Hill.		
T2	Cryptography and Network Security, William Stallings, (6e)		
	Pearson.		
T3	Everyday Cryptography, Keith M.Martin, Oxford.		
R1	Network Security and Cryptography, Bernard Meneges, Cengage		
	Learning.		
R2	Hack Proofing your Network, Russell, Kaminsky, Forest Puppy,		
	Wiley Dreamtech.		
W1	https://onlinecourses.nptel.ac.in/noc19_cs28/preview		
W2	https://www.coursera.org/learn/crypto		

Course Outcomes: On completion of this course, students can				
CO1	Explain the network security vulnerabilities/attacks and symmetric encryption schemes.			
CO2	Describe Symmetric key encryption techniques and mathematical foundations for cryptography.			
CO3	Describe public key encryption techniques and mathematical foundations for cryptography.			
CO4	Explain authentication and digital signature protocols.			
CO5	Discuss the authentication applications, web and E-mail security mechanisms.			

COMPUTER VISION				
(PROFESSIONAL ELECTIVE - V)				
Subject Code	18CTCTT704X	IA Marks	30	
Number of Lecture	3	Exam	70	
Hours/Week		Marks		
Total Number of Lecture Hours	50	Exam Hours	03	

Credits - 03

Course Objectives:

- Identify basic concepts, terminology, theories, models and methods in the field of computer vision.
- 2. Describe known principles of human visual system.
- Describe basic methods of computer vision related to multi-scale representation, edge detection and detection of other primitives, stereo, motion and object recognition.
- 4. Suggest a design of a computer vision system for a specific problem.

Unit -1: INTRODUCTION TO COMPUTER VISION	Hours
Image Processing, Computer Vision and Computer Graphics, What is Computer Vision – Low level, Mid-level, High-level, Overview of Diverse Computer Vision Applications: Document Image Analysis, Biometrics, Object Recognition, Tracking, Medical Image Analysis, ContentBased Image Retrieval, Video Data Processing, Multimedia, Virtual Reality andAugmented	08
Reality.	
THE A DISCOURSE PODDISCOVER OF THE	
Unit -2: IMAGE FORMATION MODELS	
Monocular imaging system, Radiance, Irradiance, BRDF, color etc, Orthographic & Perspective Projection, Camera model and Camera calibration, Binocular imaging systems, Multiple views geometry, Structure determination, shape from shading, Photometric Stereo, Depth from Defocus, Construction of	10
Monocular imaging system, Radiance, Irradiance, BRDF, color etc, Orthographic & Perspective Projection, Camera model and Camera calibration, Binocular imaging systems, Multiple views geometry, Structure determination, shape from shading, Photometric Stereo, Depth from Defocus,	10

Contour based representation, Region based representation, Deformable curves and surfaces, Snakes and active contours, Level set representations, Fourier and wavelet descriptors, Medial representations, Multiresolution analysis, Structure from Motion.			
Unit – 4: EDGE DETECTION			
Interest Points & Corner Detection, Feature Tracking and Optical Flow, Fitting and Alignment Camera Models and Projective Geometry, Transformation			
Matrix, Projection Matrix and Camera Calibration. Unit – 5: APPLICATIONS			
Surveillance-foreground-background separation, particle filter, Chamfer matching, tracking, and occlusion, combining views	12		
from multiple cameras , Human gait analysis Application: In-			
vehicle vision system: locating roadway, road markings,			
identifying road signs, locating pedestrians.			

Te	xt(T) / Reference(R) Books:
T1	D. Forsyth and J. Ponce, "Computer Vision - A modern approach", by, Prentice Hall Robot Vision, by B. K. P. Horn, McGraw-Hill.
T2	E. Trucco and A. Verri, "Introductory Techniques for 3D Computer Vision", Publisher: Prentice Hall.
Т3	R. C. Gonzalez, R. E. Woods. "Digital Image Processing" Addison Wesley Longman, Inc., 1992.
T4	D. H. Ballard, C. M. Brown. "Computer Vision". Prentice-Hall, Englewood Cliffs, 1982.
R1	Richard Szeliski, "Computer Vision: Algorithms and Applications" (CVAA). Springer, 2010.
R2	E. R. Davies, "Computer & Machine Vision", Fourth Edition,

|--|--|

Cour	Course Outcomes: On completion of this course, students can			
CO1	Understand the fundamental concepts of image processing and computer vision			
CO2	Extract features form Images and do analysis of Images by using image formation models.			
CO3	Apply the concept of Image shape representation and segmentation.			
CO4	Understand edge detection motion geometry Develop applications using computer Vision			
CO5	To develop applications using computer vision techniques.			

INTERNET OF THINGS LAB			
Subject Code	18CTCTL7070	IA Marks	15
Number of Tutorial	03(P)	Exam Marks	35
Hours/Week			
Total Number of Practice	36	Exam Hours	03
Hours			

Credits - 1.5

List of Experiments

Exercise1

Study on IoT Platform

a) Getting information and study of IOT microcontrollers (Arduino, Raspberry pi)

Exercise2

Study on IoT Platform

- a) Getting information about Sensors (IR, temperature, pressure, gas sensor)
- b) Getting information about actuators. (Piezoelectric actuator, pneumatic actuator)

Exercise3

Programming with Arduino platform

- a) Installation of Arduino in computer and verifying any errors in connection.
- b) Control LED using Arduino
- c) Traffic Light Control

Exercise4

Programming with Arduino platform and Reading from Sensors

- a) Interfacing sensors to Arduino board and getting information from them (any two sensors).
- b) Experiment with both analog and digital sensors.

Exercise5

Programming with Raspberry pi

- a) Displaying Date on Serial Monitor
- b) Automated Door Opening System

Exercise6

Connecting Android Phone with Arduino

- a) Connecting Arduino with Mobile Device Using the Bluetooth Module.
- b) Control any two actuators connected to the development board using Bluetooth.

Exercise7

Integrating Ethernet Shield

Read data from sensor and send it to a requesting client using socket communication. Note: The client and server should be connected to same local area network

Exercise 8

Creating Mobile App

- a) Create a mobile app to control an actuator.
- b) Control Electronic Devices from anywhere across the world using Internet & Mobile App.

Exercise9

Interfacing Cloud

- a) Push sensor data to cloud Use Arduino to Upload data from Environmental Sensors to Cloud Server.
- b) Control an actuator through cloud

Exercise10

Data analysis and Visualization

Access the data pushed from sensor to cloud and apply any data analytics or visualization services.

Exercise11

Social media with IoT

Creating Program for Local host Web Server for controlling devices and update status on Twitter through Arduino.

Exercise12

Mini Project

Identify a problem in your local area or college which can be solved by integrating the things you learned so far and create a prototype to solve it.

Course Outcomes: On completion of this course, students can			
CO1	Choose the sensors and actuators for an IoT application		
CO2	Select protocols for a specific IoT application		
CO3	Utilize the cloud platform and APIs for IoT application		
CO4	Experiment with embedded boards for creating IoT prototypes		
CO5	Design and develop a solution for a given IoT application		

DATA ANALYTICS LAB				
Subject Code	18CTCTL7080	IA Marks	15	
Number of Tutorial Hours/Week	03(P)	Exam Marks	35	
Total Number of Practice Hours	36	Exam Hours	03	

Credits - 1.5

List of Experiments

Exercise1

Perform setting up and Installing Hadoop in its two operating modes:

- a) Pseudo distributed
- b) Fully distributed

Exercise2

Use web based tools to monitor your Hadoop setup.

Exercise3

- a) Implement the following file management tasks in Hadoop:
- Adding files and directories
- · Retrieving files
- Deleting files
- b) Benchmark and stress test an Apache Hadoop cluster.

Exercise4

Stop word elimination problem:

• Input:

A large textual file containing one sentence per line A small file containing a set of stop words (One stop word per line)

• Output:

A textual file containing the same sentences of the large input file without the words appearing in the small file.

Exercise5

a) Write a Map Reduce program that mines weather data. Weather sensors collecting data every hour at many locations across the globe gather large volume of log data, which is a good candidate for analysis with MapReduce, since it is semi structured and record-oriented.

Data available at: https://github.com/tomwhite/hadoop-book/tree/master/input/ncdc/all.

 Find average, max and min temperature for each year in NCDC data set? • Filter the readings of a set based on value of the measurement, Output the line of input files associated with a temperature value greater than 30.0 and store it in a separate file.

Exercise6

Install and Run Pig then write Pig Latin scripts to sort, group, join, project, and filter your data.

Exercise7

Write a Pig Latin scripts for finding TF-IDF value for book dataset (A corpus of eBooks available at: Project Gutenberg).

Exercise 8

Install and Run Hive then use Hive to create, alter, and drop databases, tables, views, functions, and indexes.

Exercise9

Install, Deploy & configure Apache Spark Cluster. Run apache spark applications using Scala.

Exercise10

Data analytics using Apache Spark on Amazon food dataset, find all the pairs of items frequently reviewed together. Write a single Spark application that:

- Transposes the original Amazon food dataset, obtaining a PairRDD of the type:
- <user_id>→ dist of the product_ids reviewed by user_id>
- Counts the frequencies of all the pairs of products reviewed together;
- Writes on the output folder all the pairs of products that appear more than once and their frequencies. The pairs of products must be sorted by frequency.

Cours	Course Outcomes: On completion of this course, students can	
CO1	Preparing for data summarization, query, and analysis	
CO2	Applying data modelling techniques to large data sets	
CO3	Creating applications for Big Data analytics	
CO4	Building a complete business data analytic solution	

MEAN STACK TECHNOLOGIES (HTML 5, JAVASCRIPT, EXPRESS.JS, NODE.JS AND TYPESCRIPT)			
Subject Code	18CTCTS7090	IA Marks	15
Number of Lecture hours/Week	4	Exam Marks	35
Total Number of Lecture Hours	48	Exam Hours	3
Credits -2			

List of Exercises		
	Course Name: HTML5 - The Language	
	Module Name: Case-insensitivity, Platform-independency,	
	DOCTYPE Declaration,	
	Types of Elements, HTML Elements - Attributes, Metadata	
1.a	Element	
	Include the Metadata element in Homepage.html for providing	
	description as "IEKart's is an online shopping website that sells	
	goods in retail. This company deals with various categories like	
	Electronics, Clothing, Accessories etc.	
	Course Name: HTML5 - The Language	
	Module Name: Sectioning Elements	
1.b	Enhance the Homepage.html of IEKart's Shopping Application by	
	adding appropriate	
	sectioning elements.	
	Course Name: HTML5 - The Language	
	Module Name: Paragraph Element, Division and Span Elements,	
1.c	List Element	
	Make use of appropriate grouping elements such as list items to	
	"About Us" page of	
	IEKart's Shopping Application	

List	List of Exercises		
	Course Name: HTML5 - The Language		
1.d	Module Name: Link Element		
	Link "Login", "SignUp" and "Track order" to "Login.html",		
	"SignUp.html" and		
	"Track.html" page respectively. Bookmark each category to its		
	details of IEKart's Shopping application.		
	Course Name: HTML5 - The Language		
1.e	Module Name: Character Entities		
1.6	Add the © symbol in the Home page footer of IEKart's Shopping		
	application.		
	Course Name: HTML5 - The Language		
	Module Name: HTML5 Global Attributes		
1.f	Add the global attributes such as content editable, spell check, id		
	etc. to enhance the		
	Signup Page functionality of IE Kart's Shopping application.		
2.a	Course Name: HTML5 - The Language		
	Module Name: Creating Table Elements, Table Elements :		
	Colspan/ Rowspan		
	Attributes, border, cell spacing, cell padding attributes		
	Enhance the details page of IEKart's Shopping application by		
	adding a table element		
	to display the available mobile/any inventories.		
2.b	Course Name: HTML5 - The Language		
	Module Name: Creating Form Elements, Color and Date Pickers,		
	Select and Datalist		
	Elements		
	Using the form elements create Signup page for IEKart's Shopping		
2.c	application.		
2.0	Course Name: HTML5 - The Language Medula Name: Input Elements - Attributes		
	Module Name: Input Elements – Attributes		
	Enhance Signup page functionality of IEKart's Shopping		

List	of Exercises
	application by adding
	attributes to input elements.
	Course Name: HTML5 - The Language
	Module Name: Media, Iframe
2.d	Add media content in a frame using audio, video, iframe elements
	to the Home page
	of IEKart's Shopping application.
3.a	Course Name: Javascript
	Module Name: Type of Identifiers
	Write a JavaScript program to find the area of a circle using radius
	(var and let-
	reassign and observe the difference with var and let) and PI
	(const)
3.b	Course Name: Javascript
	Module Name: Primitive and Non Primitive Data Types
	Write JavaScript code to display the movie details such as movie
	name, starring,
	language, and ratings. Initialize the variables with values of
	appropriate types. Use template literals wherever necessary.
3.c	Course Name: Javascript
	Module Name: Operators and Types of Operators
	Write JavaScript code to book movie tickets online and calculate
	the total price, considering the number of tickets and price per
	ticket as Rs. 150. Also, apply afestive
	season discount of 10% and calculate the discounted amount.
	Course Name: Javascript
	Module Name: Types of Statements, Non - Conditional
	Statements, Types of Conditional Statements, if Statements,
3.d	switch Statements
	Write a JavaScript code to book movie tickets online and calculate
	the total price based on the 2 conditions: (a) If seats to be booked
	are not more than 2, the cost per ticket remains Rs. 150. (b) If

List of Exercises		
	seats are 6 or more, booking is not allowed.	
	Course Name: Javascript	
3.e	Module Name: Types of Loops	
	Write a JavaScript code to book movie tickets online and calculate the total price based on the 2 conditions: (a) If seats to be booked are not more than 2, the cost per ticket remains Rs. 150. (b) If seats are 6 or more, booking is not allowed.	
	Course Name: Javascript	
	Module Name: Types of Functions, Declaring and Invoking	
	Function, Arrow	
	Function, Function Parameters, Nested Function, Built-in	
	Functions, Variable Scope inFunctions	
4.a	Write a JavaScript code to book movie tickets online and calculate	
	the total price	
	based on the 2 conditions: (a) If seats to be booked are not more	
	than 2, the cost per ticket remains Rs. 150. (b) If seats are 6 or	
	more, booking is not allowed.	
4.b	Course Name: Javascript	
	Module Name: Working With Classes, Creating and Inheriting	
	Classes	
	Create an Employee class extending from a base class Person. Hints: (i) Create a class Person with name and age as attributes. (ii) Add a constructor to initialize the values (iii) Create a class Employee extending Person with additional attributes role	
4.c	Course Name: Javascript	
	Module Name: In-built Events and Handlers	
	Write a JavaScript code to book movie tickets online and	
	calculate the total price based on the 2 conditions: (a) If seats to be booked are not more than 2, the cost per ticket remains Rs.	
	150. (b) If seats are 6 or more, booking is not allowed.	
4.d	Course Name: Javascript	
	Module Name: Working with Objects, Types of Objects, Creating Objects, Combining and cloning Objects using Spread operator, Destructuring Objects,	
	Browser Object Model, Document Object Model	

List of Exercises		
	If a user clicks on the given link, they should see an empty cone, a	
	different heading,	
	and a different message and a different background color. If user	
	clicks again, they should see a re-filled cone, a different heading, a	
	different message, and a different back ground color	
	Course Name: Javascript	
	Module Name: Creating Arrays, Destructuring Arrays, Accessing	
5.a	Arrays, Array Methods	
J.a	Create an array of objects having movie details. The object should include the movie name, starring, language, and ratings. Render the details of movies on the page using the array.	
	Course Name: Javascript	
	Module Name: Introduction to Asynchronous Programming,	
	Callbacks, Promises,	
	Async and Await, Executing Network Requests using Fetch API	
5.b	Simulate a periodic stock price change and display on the console.	
	Hints: (i) Create a method which returns a random number - use	
	Math.random, floor and other methods to return a rounded value.	
	(ii) Invoke the method for every three seconds and stop	
	When random value is zero.	
	Course Name: Javascript	
	Module Name: Creating Modules, Consuming Modules Validate the user by creating a login module. Hints: (i) Create a	
5.c	file login.js with a User class. (ii) Create a validate method with	
3.0	username and password as arguments.	
	(iii) If the username and password are equal it will return "Login	
	Successful" else will return "Login is Failure".	
6.a	Course Name: Node.js	
	Module Name: How to use Node.js	
	Verify how to execute different functions successfully in the Node.js platform.	
6.b	Course Name: Node.js	
	Module Name: Create a web server in Node.js	
	ÿ	

List	of Exercises
	Write a program to show the workflow of JavaScript code
	executable by creating web
	server in Node.js.
	Course Name: Node.js
6.c	Module Name: Modular programming in Node.js
	Write a Node.js module to show the workflow of Modularization of Node application.
6.d	Course Name: Node.js
o.u	Module Name: Restarting Node Application
	Write a program to show the workflow of restarting a Node application.
	Course Name: Node.js
	Module Name: File Operations
6.e	Create a text file src.txt and add the following data to it. Mongo,
	Express, Angular,
	Node.
	Course Name: Express.js
	Module Name: Defining a route, Handling Routes, Route
	Parameters, Query
7.a	Parameters
	Implement routing for the AdventureTrails application by
	embedding the necessary
	code in the routes/route.js file.
	Course Name: Express.js
	Module Name: How Middleware works, Chaining of
	Middlewares, Types of
7.b	Middlewares
	In myNotes application: (i) we want to handle POST submissions.
	(ii)display
	customized error messages. (iii) perform logging.
	Course Name: Express.js
7.c	Module Name: Connecting to MongoDB with Mongoose,
7.0	Validation Types and
	Defaults

List	of Exercises
	Write a Mongoose schema to connect with MongoDB.
	https://infyspringboard.onwingspan.com/web/en/viewer/web-module/lex_auth_013035588775485440691_shared?collectionId=lex_324078356719
	46760000_shared&collectionType=Course
	Course Name: Express.js
7.d	Module Name: Models
	Write a program to wrap the Schema into a Model object.
	Course Name: Express.js
	Module Name: CRUD Operations
8.a	Write a program to perform various CRUD (Create-Read-Update-
	Delete) operations
	using Mongoose library functions.
	Course Name: Express.js
	Module Name: API Development
	In the myNotes application, include APIs based on the
8.b	requirements provided. (i) API
	should fetch the details of the notes based on a notesID which is
	provided in the URL. Test URL - http://localhost:3000/notes/7555
	(ii) API should update the details based on input notes ID
	Course Name: Express.js
8.c	Module Name: Why Session management, Cookies
	Write a program to explain session management using cookies.
	Course Name: Express.js
8.d	Module Name: Sessions
	Write a program to explain session management using sessions.
8.e	Course Name: Express.js
	Module Name: Why and What Security, Helmet Middleware
	Implement security features in myNotes application
	Course Name: Typescript
9.a	Module Name: Basics of TypeScript
	On the page, display the price of the mobile-based in three
	different colors. Instead of

List	List of Exercises	
	using the number in our code, represent them by string values like	
	GoldPlatinum, PinkGold, SilverTitanium.	
	Course Name: Typescript	
	Module Name: Function	
9.b	Define an arrow function inside the event handler to filter the product array with the selected product object using the productId received by the function. Pass theselected	
	product object to the next screen.	
	Course Name: Typescript	
	Module Name: Parameter Types and Return Types	
9.c	Consider that developer needs to declare a function -	
	getMobileByVendor which	
	accepts string as input parameter and returns the list of mobiles.	
	Course Name: Typescript	
	Module Name: Arrow Function	
9.d	Consider that developer needs to declare a manufacturer's array holding 4 objects with id and price as a parameter and needs to implement an arrow function - myfunction to	
	populate the id parameter of manufacturers array whose price is	
	greater than or equal to 100.	
	Course Name: Typescript	
	Module Name: Optional and Default Parameters	
9.e	Declare a function - getMobileByManufacturer with two parameters namely manufacturer and id, where manufacturer value should passed as Samsung and id	
	parameter should be optional while invoking the function, if id is	
	passed as 101 then this function should return the name of	
	manfacturer	
	Course Name: Typescript	
10. a	Module Name: Rest Parameter	
	Implement business logic for adding multiple Product values into	
	a cart variable which	
	is type of string array.	
10.	Course Name: Typescript	
	> I I.	

List	List of Exercises		
b	Module Name: Creating an Interface		
	Declare an interface named - Product with two properties like		
	productId and		
	productName with a number and string datatype and need to		
	implement logic to populate the Product details.		
	Course Name: Typescript		
4.0	Module Name: Duck Typing		
10. c	Declare an interface named - Product with two properties like productId and productName with the number and string datatype and need to implement logicto		
	populate the Product details.		
10.	Course Name: Typescript		
d	Module Name: Function Types		
	Declare an interface with function type and access its value.		
	Course Name: Typescript		
	Module Name: Extending Interfaces		
11.	Declare a productList interface which extends properties from two		
a	other declared		
	interfaces like Category, Product as well as implementation to		
	create a variable of this interface type.		
	Course Name: Typescript		
11	Module Name: Classes		
b	Consider the Mobile Cart application, Create objects of the		
	Product class and place		
	them into the productlist array.		
	Course Name: Typescript		
	Module Name: Constructor		
11.	Declare a class named - Product with the below-mentioned		
c c	declarations: (i) productId		
	as number property (ii) Constructor to initialize this value (iii)		
	getProductId method to return the message "Product id is < <iid< td=""></iid<>		
	value>>".		
11.	Course Name: Typescript		

List of Exercises		
d	Module Name: Access Modifiers	
	Create a Product class with 4 properties namely productId, productName, productPrice, productCategory with private, public, static, and protectedaccess modifiers and accessing them through Gadget class and its	
	methods.	
	Course Name: Typescript	
12.	Module Name: Properties and Methods	
a	Create a Product class with 4 properties namely productId and	
	methodsto	
	setProductId() and getProductId().	
	Course Name: Typescript	
12.	Module Name: Creating and using Namespaces	
b	Create a namespace called ProductUtility and place the Product	
	class definition in it.	
	Import the Product class inside productlist file and use it.	
	Course Name: Typescript	
10	Module Name: Creating and using Modules	
12. c	Consider the Mobile Cart application which is designed as part of the functions in a module to calculate the total price of the product using the quantity and price values	
	and assign it to a totalPrice variable.	
	Course Name: Typescript	
	Module Name: What is Generics, What are Type Parameters,	
12. d	Generic Functions,	
	Generic Constraints	
	Create a generic array and function to sort numbers as well as	
	string values.	

Text(T) / Reference(R) Books:			
T	Pro Mean Stack Development, 1st Edition, ELadElrom,		
1	ApressO'Reilly.		

T	Full Stack JavaScript Development with MEAN, Colin J Ihrig,			
2	Adam Bretz, 1st edition, SitePoint, SitePoint Pty. Ltd.,			
	O'ReillyMedia.			
R	Web Technologies, HTML, JavaScript, PHP, Java, JSP, XML and			
1	AJAX, Black book, 1stEdition, DreamTech.			
R	An Introduction to Web Design, Programming, 1st Edition, Paul S			
2	Wang, Sanda S Katila, Cengage Learning.			
W	https://infyspringboard.onwingspan.com/en/app/toc/lex_177397328			
1	34840810000_shared/overview (HTML5)			
W	https://infyspringboard.onwingspan.com/en/app/toc/lex_181096983			
2	66332810000_shared/overview (Javascript)			
W	https://infyspringboard.onwingspan.com/en/app/toc/lex_324078356			
3	71946760000_shared/overview (Node.js &Express.js)			
W	https://infyspringboard.onwingspan.com/en/app/toc/lex_9			
4	436233116512678000_shared/overview(Typescript)			

Course Outcomes:					
CO1	Develop professional web pages of an application using HTML				
	elements like lists, navigations, tables, various form elements,				
	embedded media which includes images, audio, video and CSS				
	Styles.				
CO2	Utilize JavaScript for developing interactive HTML web pages				
	and validate form.				
CO3	Build a basic web server using Node.js and also working with				
	Node Package Manager(NPM).				
CO4	Build a web server usingExpress.js				
CO5	Make use of Typescript to optimize JavaScript code by using the				
	concept of strict type checking.				

Open Elective

Courses Offered by All the Departments

Open Elective Courses Offered by Civil to other Departments

Open Electives offered by Civil Department:

S.No	Subject Code	Subject		
1	18XXCEOXXXX	Civil Engineering-Societal & Global		
1		Impact		
2	18XXCEOXXXX	Introduction to Civil Engineering		
3	18XXCEOXXXX	Disaster Management		
4	18XXCEOXXXX	Environmental Pollution and control		
5	18XXCEOXXXX	Building Materials		
6	18XXCEOXXXX	Green Buildings and sustainability		

CIVIL ENGINEERING -SOCIETAL & GLOBAL IMPACT							
Subject Code	18XXCEOXXXX	Internal Marks	30				
Number of Lecture Hours/Week	03	External Marks	70				
Total Number of	48	Exam Hours	03				
Lecture Hours Credits – 03							
Course Objectives:	Create ve						
 Awareness of the importance of Civil Engineering and the impact it has on the Society and at global levels Awareness of the impact of Civil Engineering for the various specific fields of human endeavour 							
Need to think innovatively to ensure Sustainability							
	Unit -1		Hours				
Understanding the importance of Civil Engineering in shaping and impacting the world; The ancient and modern Marvels and Wonders in the field of Civil Engineering; Future Vision for Civil Engineering							
	Unit -2						
Infrastructure - Habitats, Megacities, Smart Cities, futuristic visions; Transportation (Roads, Railways & Metros, Airports, Seaports, River ways, Sea canals, Tunnels (below ground, under water); Futuristic systems (ex, Hyper Loop)); Energy generation (Hydro, Solar (Photovoltaic, Solar Chimney), Wind, Wave, Tidal, Geothermal, Thermal energy)							
Unit – 3							
Environment- Traditional & futuristic methods; Solid waste management, Water purification, Wastewater treatment & Recycling, Hazardous waste treatment; Flood control (Dams, Canals, River interlinking), Multi-purpose water projects, Atmospheric pollution; Global warming phenomena and Pollution Mitigation measures, Stationary and non- stationary; Environmental Metrics & Monitoring; Other Sustainability measures; Innovations and methodologies for ensuring Sustainability.							
Unit – 4							

Built environment – Facilities management, Climate control; Intelligent/ Smart Buildings; Aesthetics of built environment, Role of Urban Arts Commissions; Conservation, Repairs & Rehabilitation of Structures	09
Unit-5	
Civil Engineering Projects – Environmental Impact Analysis procedures; Waste (materials, manpower, equipment) avoidance/ Efficiency increase; Advanced construction techniques for better sustainability; Techniques for reduction of Green House Gas emissions in various aspects of Civil Engineering Project	10

On completion of this course, students are able to:

- 1. Understand the role of Civil Engineering in Modern World
- Understand various constructional Infrastructure and their importance in present environment
- 3. Interpret modern transportation systems and their advantages
- 4. Effect of global Warming and mitigation measures
- Understand the importance of Sustainability and Reduction of Green House Gas Emissions

TEXT BOOKS

- Žiga Turk (2014), Global Challenges and the Role of Civil Engineering, Chapter 3 in: Fischinger M. (eds) Performance-Based Seismic Engineering: Vision for an Earthquake Resilient Society. Geotechnical, Geological and Earthquake Engineering, Vol. 32. Springer, Dordrecht
- Brito, Ciampi, Vasconcelos, Amarol, Barros (2013)
 Engineering impacting Social, Economical and Working Environment, 120th ASEE Annual Conference and Exposition
- NAE Grand Challenges for Engineering (2006), Engineering for the Developing World, The Bridge, Vol 34, No.2, Summer 2004.

- Allen M. (2008) Cleansing the city. Ohio University Press. Athens Ohio.
- Ashley R., Stovin V., Moore S., Hurley L., Lewis L., Saul A. (2010). London Tideway Tunnels Programme – Thames Tunnel Project Needs Report – Potential source control and SUDS applications: Land use and retrofit options

- 3. http://www.thamestunnelconsultation.co.uk/consultation-documents.aspx
- Ashley R M., Nowell R., Gersonius B., Walker L. (2011). Surface Water Management and Urban Green Infrastructure. Review of Current Knowledge. Foundation for Water Research FR/R0014

INTRODUCTION TO CIVIL ENGINEERING			
Subject Code	18XXCEOXXXX	Internal	30
Subject Code	TOAACEUAAAA	Marks	30
Number of Lecture	03	External	70
Hours/Week	03	Marks	70
Total Number of Lecture	48	Exam Hours	03
Hours	40	Exam nours	03

Credits - 03

- To give an understanding to the students of the vast breadth and numerous areas of engagement available in the overall field of Civil Engineering
- 2. To motivate the student to pursue a career in one of the many areas of Civil Engineering with deep interest and keenness.
- 3. To expose the students to the various avenues available for doing creative and
- 4. Innovative work in this field by showcasing the many monuments and inspiring projects of public utility.

Unit -1History of Civil engineering	Hours
Early constructions and developments over time; Ancient monuments & Modern marvels; Development of various materials of construction and methods of construction; Works	10
of Eminent civil engineers Unit -2Fundamentals of Building Materials	
Stones, bricks, mortars, Plain, Reinforced & Prestressed Concrete, Admixture; Structural Steel, High Tensile Steel, Recycling of Construction & Demolition wastes, Damp Proofing and water proofing materials and uses – Plastering Pointing, white washing and distempering. Paints: Constituents of a paint – Types of paints – Painting of new/old wood-Varnish. Form Works and Scaffoldings.	10
Unit – 3Basics of Construction Management & C Management	Contracts
Temporary Structures in Construction; Construction Methods for various types of Structures; Major Construction equipment; Modern Project management Systems; Advent of Lean Construction; Importance of	10

Contracts Management-Terms in Contract-contract	
Types	
Unit – 4 Surveying & Geomatics	
Surveying & Geomatics: Overview of Surveying, Traditional surveying techniques-, Total Stations; GPS & GIS	09
Applications	
Unit-5 Geotechnical Engineering	
Basics of soil mechanics, rock mechanics and geology; various types of foundations; basics of rock mechanics & tunneling	09

On completion of this course, students are able to:

- 1. Understand the role of Civil Engineering in Modern World
- 2. Know the details and working of various building materials
- 3. Understand the concept of various construction management Techniques
- 4. Know basic surveying methods and their applications
- Understand the importance of soil mechanics and rock mechanics in various structural designs

TEXT BOOKS

- Patil, B.S.(1974), Legal Aspects of Building and Engineering Contract
- 2. Soil dynamics and machine foundations by K.R. Arora
- 3. Surveying vol 1&2 by B.C. Punmia, Laxmi publications, 2005
- Building Materials by P.C.Verghese, PHI learning pvt. Ltd., 2015
- Meena Rao (2006), Fundamental concepts in Law of Contract, 3rd Edn. Professional Offset

- Chandiramani, Neelima (2000), The Law of Contract: An Outline, 2nd Edn. Avinash Publications Mumbai
- 2. Avtarsingh (2002), Law of Contract, Eastern Book Co.
- 3. Dutt (1994), Indian Contract Act, Eastern Law House
- 4. The National Building Code, BIS, (2017)

DISASTER MANAGEMENT			
Subject Code	18XXCEOXXXX	Internal Marks	30
Number of Lecture	03	External Marks	70
Hours/Week			
Total Number of	48	Exam Hours	03
Lecture Hours			

Credits – 03

Course Objectives:

- Develop an understanding of why and how the modern disaster manager is involved with pre-disaster and post-disaster activities.
- 2. Develop an awareness of the chronological phases of natural disaster response and refugee relief operations. Understand how the phases of each are parallel and how they differ.
- 3. Understand the 'relief system' and the 'disaster victim.
- 4. Describe the three planning strategies use full in mitigation.
- 5. Identify the regulatory controls used in hazard management.
- 6. Describe public awareness and economic incentive possibilities.

Unit -1: Natural Hazards And Disaster Management	
Introduction of DM-Inter Disciplinary –nature of the subject—Disaster Management cycle–Five priorities for action. Case study methods of the following: floods, draughts – Earthquakes – global warming, cyclones &Tsunamis – Post Tsunami hazards along the Indian coast–landslides.	10
Unit -2: Man Made Disaster And Their Management Along Case Study Methods Of The Following	With
Fire hazards— transport hazard dynamics— solid waste management—post disaster—bio terrotirism- threat in mega cities, rail and aircraft's accidents, and Emerging in factious diseases & Aids and their management.	09
Unit – 3: Risk And Vulnerability	
Building codes and land use planning –social vulnerability– environmental vulnerability–Macroeconomic management and sustainable development, climate change risk rendition– financial management of disaster– related losses	09

and

process

facilities-

10

Unit – 4: Role Of Technology In Disaster Managements

Disaster management for infrastructures, taxonomy of

plants

infrastructure-treatment

electrical substations- roads and bridges- mitigation
programme for earthquakes-flow chart, geospatial
information in agriculture drought assessment-multimedia
technology in disaster risk management and training-
transformable indigenous knowledge in disaster reduction.
Unit 5: Education And Community Propagators

Unit-5: Education And Community Preparedness:

Education in disaster risk reduction-Essentials of school			
disaster education-Community capacity and disaster			
resilience-Community based disaster recovery-Community			
based disaster management and social capital- Designing			
resilience-building community capacity for action.			

Course outcomes:

On completion of this course, students are able to

Affirm the usefulness of integrating management principles in disaster mitigation work.

10

- 2. Distinguish between the different approaches needed to manage pre- during and post-disaster periods.
- 3. Explain the process of risk management.
- 4. Relate to risk transfer.
- 5. Prepare community for risk reduction.

TEXT BOOKS

- 1. Disaster Management-Global Challenges and Local Solutions 'by Rajib shah & RKrishnamurthy (2009), Universities press.
- Disaster Science & Management 'by Tushar Bhattacharya, Tata Mc Graw Hill Education Pvt. Ltd., NewDelhi.
- 3. Disaster Management–Future Challenges and Opportunities 'by Jagbir Singh(2007), I K International Publishing House Pvt. Ltd.
- http://ndma.gov.in/ (Home page of National Disaster Management Authority).

ENVIONMENTAL POLLUTION AND CONTROL			
Subject Code	18XXCEOXXXX	Internal	30
		Marks	
Number of Lecture	03	External	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam Hours	03
Hours			

Credits - 03

Course Objectives:

- 1. Impart knowledge on fundamental aspects of air pollution & control, noise pollution, and solid waste management.
- 2. Provide basic knowledge on sustainable development.
- 3. Introduces some basics of sanitation methods essential for protection of community health.
- 4. Differentiate the solid and hazardous waste based on characterization.

Unit -1 Introduction	Hours
Air Pollution: Air pollution Control Methods–Particulate	110415
•	
control devices– Methods of Controlling Gaseous	10
Emissions–Air quality standards.	10
Noise Pollution : Noise standards, Measurement and control	
methods- Reducing residential and industrial noise-	
ISO14000.	
Unit -2 Industrial wastewater Management	
Strategies for pollution control- Volume and Strength	
reduction-Neutralization -Equalization- Proportioning -	00
Common Effluent Treatment Plants-Recirculation of	09
industrial wastes-Effluent standards.	
Unit - 3SolidWasteManagement	•
Solid waste characteristics -basics of on-site handling and	
collection -separation and processing-Incineration-	
Composting-Solid waste disposal methods– fundamentals of	09
Land filling.	
Unit – 4 Environmental Sanitation	l
Environmental Sanitation Methods for Hostels and Hotels,	10
Hospitals, Swimming pools and public bathing places, social	

gatherings (mela sand fares), Schools and Institutions, Rural	
Sanitation-low cost waste disposal methods.	ĺ
Unit-5 Hazardous Waste	
Characterization - Nuclear waste- Biomedical wastes-	
Electronic wastes-Chemical wastes-Treatment and	10
management of hazardous waste-Disposal and Control	10
methods.	Ì

On completion of this course, students are able to

- 1. Identify the air pollutant control devices
- Have knowledge on the NAAQ standard sand air emission standards.
- Differentiate the treatment techniques used for sewage and industrial waste water treatment methods.
- 4. Understand the fundamentals of solid waste management; practices adopted in his town/village and its importance in keeping the health of the city.
- Appreciate the methods of environmental sanitation and the management of community facilities without spread of epidemics.

TEXT BOOKS

- 1. Environmental Engineering, byRuth F. Weiner and Robin Matthews—4th Edition Elesevier, 2003.
- Environmental Science and Engineering byJ.G.HenryandG.W. Heinke–Pearson Education.
- Environmental Engineering by Mackenzie L Davis &David A Cornwell.McGrawHillPublishing1. Air Pollution and Control by M.N.Rao&H.N.Rao

- 1. Air Pollution and Control by M.N.Rao&H.N.Rao
- Solid Waste Management by K.SasiKumar, S.A.GopiKrishna. PHI New Delhi.
- **3.** Environmental Engineering by Gerard Kiley, TataMcGrawHill.
- **4.** Environmental Sanitation by KVSG Murali Krishna, Reem Publications, New Delhi.

BUILDING MATERIALS			
Subject Code	18XXCEOXXXX	Internal	30
		Marks	
Number of Lecture	03	External	70
Hours/Week		Marks	
Total Number of	48	Exam Hours	03
Lecture Hours			

Credits - 03

- 1. Initiating the student with the knowledge of basic building materials and their properties
- Imparting the knowledge of course pattern in masonry construction and flat roofs and techniques of forming foundation, columns, beams, walls, sloped and flat roofs.
- 3. The student is to be exposed to the various patterns of floors, walls, different types of paints and varnishes.
- **4.** Imparting the students with the techniques of formwork and scaffolding
- 5. The students should be exposed to classification of aggregates, moisture content of the aggregate.

aggregates, moisture content of the aggregate.	
Unit -1 Introduction	Hours
Stones, Bricks And Tiles Properties of building stones – relation to their structural requirements, classification of stones – stone quarrying – precautions in blasting, dressing of stone, composition of good brick earth, various methods of manufacturing of bricks. Characteristics of good tile – manufacturing methods, types of tiles. Uses of materials like	10
Aluminium, Gypsum, Glass and Bituminous materials	
Unit -2Masonry	
Types of masonry, English and Flemish bonds, Rubble and Ashlars Masonry. Cavity and partition walls. Wood: Structure – Properties- Seasoning of timber- Classification of various types of woods used in buildings- Defects in timber. Alternative materials for wood – Galvanized Iron, Fiber Reinforced Plastics, Steel, Aluminium	10
Unit – 3Lime And Cement Lime	
Various ingredients of lime – Constituents of lime stone – classification of lime – various methods of manufacture of	10

lime. Cement: Portland cement- Chemical Composition -	
Hydration, setting and fineness of cement. Various types of	
cement and their properties. Various field and laboratory tests	
for Cement. Various ingredients of cement concrete and their	
importance – various tests for concrete.	
Unit – 4 Building Components	
Lintels, arches, vaults, stair cases – types. Different types of	
floors - Concrete, Mosaic, and Terrazzo floors, Pitched, flat	
roofs. Lean to roof, Coupled Roofs. Trussed roofs – King and	09
Queen post Trusses. R.C.C Roofs, Madras Terrace and Pre-	
fabricated roofs	
Unit-5 Finishing's	
Damp Proofing and water proofing materials and uses -	
Plastering Pointing, white washing and distempering. Paints:	00
Constituents of a paint – Types of paints – Painting of new/old	09
wood- Varnish. Form Works and Scaffoldings.	

On completion of this course, students are able to

- 1. Identify different building materials and their importance in building construction.
- 2. Differentiate brick masonry, stone masonry construction and use of lime and cement in various constructions.
- 3. Importance of building components and finishings.
- 4. Classification of aggregates, sieve analysis and moisture content usually required in building construction.
- Understand the role of different floors, paints, Damp Proofing, structural elements

TEXT BOOKS

- 1. Building Materials, S. S. Bhavikatti, Vices publications House private ltd.
- 2. Building Construction, S. S. Bhavikatti, Vices publications House private ltd.
- 3. Building Materials, B. C. Punmia, Laxmi Publications private ltd.
- 4. Building Construction, B.C. Punmia, Laxmi Publications (p) ltd

- Building Materials, S. K. Duggal, New Age International Publications.
- 2. Building Materials, P. C. Verghese, PHI learning (P) ltd.

- 3. Building Materials, M. L. Gambhir, Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 4. Building construction, P. C. Verghese, PHI Learning (P) Ltd.

GREEN BUILDINGS AND SUSTAINABILITY				
Subject Code	18XXCEOXXXX	Internal	30	
		Marks		
Number of Lecture	03	External	70	
Hours/Week		Marks		
Total Number of Lecture	48	Exam Hours	03	
Hours				

Credits -03

Course Objectives:

Enable the students to

- 1. Know the green building and green energy building materials.
- Familiarize with different rating agencies and features of green buildings.
- 3. Understand the term sustainability and sustainable development.
- 4. Learn sources of greenhouse gases and its impact on climate.
- 5. Understand and Plan land use confirming to zonal regulations

3. Guardana and Fair land use commining to zonar regu	
Unit -1	Hours
INTRODUCTION What is Green Building, Why to go for Green Building, Benefits of Green Buildings, Green Building Materials and Equipment in India, What are key Requisites for Constructing a Green Building, Important Sustainable features for Green Building	10
Unit -2	
GREEN BUILDING CONCEPTS AND PRACTICES Indian Green Building Council, Green Building Moment in India, Benefits Experienced in Green Buildings, Launch of Green Building Rating Systems, Residential Sector, Market Transformation; Green Building Opportunities And Benefits: Opportunities of Green Building, Green Building Features, Material and Resources, Water Efficiency, Optimum Energy Efficiency, Typical Energy Saving Approach in Buildings, LEED India Rating System and Energy Efficiency,	10
Unit – 3 SUSTAINABILITY Introduction, Human development index, Sustainable development and social	09

ethics, definitions of sustainability, populations and	
consumptions	
Unit – 4	
THE CARBON CYCLE AND ENERGY BALANCES Introduction, Climate science history, carbon sources and emissions, The carbon cycle, carbon flow pathways, and repositories, Global energy balance, Global energy balance and temperature model, Greenhouse gases and Effects, Climate change projections and impacts	09
Unit-5	
SUSTAINABILITY AND BUILT ENVIRONMENT Introduction, Land use and land cover change, Land use planning and its role in sustainable development-Zoning and land use planning, smart growth, Environmentally sensitive design- low impact development, green infrastructure and conservation design, Green buildings and land use planning, Energy use and buildings	10
Common automass.	

On completion of this course, students are able to:

- 1. Describe green buildings and green building materials.
- Acquaint with different rating agencies and energy features of green buildings.
- 3. Understand the term sustainability and sustainable development.
- Recognize sources of green house gases emissions and its impact on climate.
- 5. Plan land use confirming to zonal regulations.

TEXT BOOKS

- Standard for the Design of High-Performance Green Buildings by ASHRAE
- Engineering Applications in Sustainable Design and Development By Bradley A.Striebig, Adebayo A.Ogundipe and Maria Papadakis. First edition, 2016, CENGAGE Learning.

REFERENCES

 Handbook on Green Practices published by Indian Society of Heating Refrigerating and Air Conditioning Engineers, 2009.

- 2. Green Building Hand Book by Tomwoolley and Samkimings, 2009.
- 3. IGBC Smart Cities & Green Building Concept in India

Open Elective Courses Offered by CSE,CST & IT to other Departments

Open Elective Courses offered by CSE

S.No.	Subject Code	Name of the subject	L	T	P	Cr
1.	18XXCSOXXXX	Internet of Things	3	0	0	3
2.	18XXCSOXXXX	Block Chain	3	0	0	3
3.	18XXCSOXXXX	Quantum Computing	3	0	0	3
4.	18XXCSOXXXX	Virtual Reality	3	0	0	3
5.	18XXCSOXXXX	Data Structures through C	3	0	0	3
6.	18XXCSOXXXX	Designing Database Management Systems	3	0	0	3
7.	18XXCSOXXXX	Operating Systems Concepts	3	0	0	3
8.	18XXCSOXXXX	R Programming	3	0	0	3
9.	18XXCSOXXXX	Python Programming	3	0	0	3
10	18XXCSOXXXX	Java Programming	3	0	0	3
11	18XXCSOXXXX	App Technologies	3	0	0	3
12	18XXCSOXXXX	Web Technologies	3	0	0	3
13	18XXCSOXXXX	Artificial Intelligence	3	0	0	3

Open Electives Courses Offered by CST to other Departments

S.No	Subject Code	Name of the subject	L	Т	P	Cr
1	18XXCTOXXXX	Internet of Things	3	0	0	3
2	18XXCTOXXXX	Block Chain	3	0	0	3
3	18XXCTOXXXX	Quantum Computing	3	0	0	3
4	18XXCTOXXXX	Virtual Reality	3	0	0	3
5	18XXCTOXXXX	Data Structures Through C	3	0	0	3
6	18XXCTOXXXX	Designing Database Management Systems	3	0	0	3
7	18XXCTOXXXX	Operating Systems Concepts	3	0	0	3
8	18XXCTOXXXX	R Programming	3	0	0	3
9	18XXCTOXXXX	Python Programming	3	0	0	3
10	18XXCTOXXXX	Java Programming	3	0	0	3
11	18XXCTOXXXX	App Technologies	3	0	0	3
12	18XXCTOXXXX	Web Technologies	3	0	0	3
13	18XXCTOXXXX	Artificial Intelligence	3	0	0	3

RNET OF THINGS		
18XXCTOXXXX	IA	30
	Marks	
03	Exam	70
	Marks	
48	Exam	03
	Hours	
	18XXCTOXXXX 03	18XXCTOXXXX IA Marks 03 Exam Marks 48 Exam Hours

Credits - 03

Course Objectives:

- Identify problems that are amenable to solution by AI methods, and which AI methods may be suited to solving a given problem.
- 2. Formalize a given problem in the language/framework of different AI methods (e.g., as a search problem, as a constraint satisfaction problem, as a planning problem, as a Markov decision process, etc).
- 3. Implement basic AI algorithms (e.g., standard search algorithms or dynamic programming).
- 4. Design and carry out an empirical evaluation of different algorithms on problem formalization, and state the conclusions that the evaluation supports.

Unit -1: The Internet of Things	Hours
An Overview of Internet of things, Internet of Things Technology, behind IoTs Sources of the IoTs, M2M Communication, Examples OF IoTs, Design Principles for Connected Devices	09
Unit -2 :Business Models	
Business Processes in the Internet of Things ,IoT/M2M systems LAYERS AND designs standardizations ,Modified OSI Stack for the IoT/M2M Systems ,ETSI M2M domains and High-level capabilities ,Communication Technologies, Data Enrichment and Consolidation and Device Management Gateway Ease of designing and affordability	10
Unit – 3:Design Principles for the Web Connectivity	
Design Principles for the Web Connectivity for connected- Devices, Web Communication protocols for Connected	10

Devices, Message Communication protocols for Connected	
Devices, Web Connectivity for connected-Devices.	
Unit – 4:Internet Connectivity Principles	
Internet Connectivity Principles, Internet connectivity, Application Layer Protocols: HTTP, HTTPS, FTP, Telnet. Data Acquiring, Organizing and Analytics in IoT/M2M, Applications/Services/Business Processes, IOT/M2M Data Acquiring and Storage, Business Models for Business Processes in the Internet of Things, Organizing Data, Transactions, Business Processes, Integration and Enterprise Systems.	10
Unit – 5:Data Collection	
Data Collection, Storage and Computing Using a Cloud Platform for IoT/M2M Applications/Services, Data Collection, Storage and Computing Using cloud platform Everything as a service and Cloud Service Models, IOT cloud-based services using the Xively (Pachube/COSM), Nimbits and other platforms Sensor, Participatory Sensing, Actuator, Radio Frequency Identification, and Wireless, Sensor Network Technology, Sensors Technology, Sensing the World.	09

Text	T) / Reference(R) Books:	
T1	Internet of Things: Architecture, Design Principles And	
	Applications, Rajkamal, McGraw Hill Higher Education	
T2	Internet of Things, A.Bahgya and V.Madisetti, Univesity Press,	
	2015	
R1	Designing the Internet of Things, Adrian McEwen and Hakim	
	Cassimally, Wiley	
R2	Getting Started with the Internet of Things CunoPfister , Oreilly	
W1	https://www.coursera.org/specializations/internet-of-things	
W2	https://alison.com/course/internet-of-things-and-the-cloud	
Cour	se Outcomes: On completion of this course, students can	
CO1	Demonstrate knowledge and understanding of the security and	
	ethical issues of the Internet of Things	
CO2	Conceptually identify vulnerabilities in Internet of Things	
CO3	Conceptually identify recent attacks, involving the Internet of	
	Things	

CO4	Develop critical thinking skills
CO5	Compare and contrast the threat environment based on industry
	and/or device type.

BLOCK CHAIN TECHNOLOGY			
Subject Code	18XXCTOXXXX	IA	30
		Marks	
Number of Lecture	03	Exam	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam	03
Hours		Hours	
	C 1:4- 02		

Credits – 03

- 1. To assess blockchain applications in a structured manner.
- 2. To impart knowledge in block chain techniques and able to present the concepts clearly and structured.
- 3. To get familiarity with future currencies and to create own crypto token.

Unit -1: Introduction	Hours
Overview of Block chain, public ledgers, bitcoin, smart contracts, block in a block chain, transactions, distributed consensus, public vs private block chain, understanding crypto currency to block chain, permissioned model of block chain, overview of security aspects of block chain, cryptographic hash function, properties of a hash function, hash pointer and Merkle tree, digital signature, public key cryptography, a basic crypto currency.	10
Unit -2 :Understanding block chain with crypto currency	
Creation of coins, payments and double spending, bitcoin scripts, bitcoin P2P network, transaction in bitcoin network, block mining, block propagation and block relay, distributed consensus in open environments, consensus in a bitcoin network, Proof of Work (PoW)- Basic Introduction, hashcash PoW, Bitcoin PoW, Attacks on PoW and the monopoly problem, Proof of Stake, Proof of burn and proof of elapsed time, the life of a bitcoin miner, Mining- Difficulty, mining pool.	10
Unit – 3:Permissioned Block Chain	
Permissioned model and usecases, design issues for permissioned block chains, execute contracts, state machine replication, overview of consensus models for permissioned	10

block	chain, Distributed consensus in closed environment,	
^	s, RAFT consensus, Byzantine general problem, Byzantine	
	tolerance system, Lamport-Shostak-Pease BFT algorithm,	
	over Asynchronous systems.	
Unit	- 4:Enterprise application of Block chain	
	s border payments, Know Your Customer, Food security,	
Mort	gage over block chain, Block chain enabled trade, trade	09
finan	ce network, supply chain financing, identity on block	09
chair	ı.	
Unit	– 5:Block chain application development	
Нуре	erledger fabric- architecture, identities and policies,	
mem	bership and access control, channels, transaction	
valid	ation, writing smart contract using Hyperledger fabric,	09
writi	ng smart contract using Ethereum, overview of Ripple and	
Cord	-	
Text	(T) / Reference(R) Books:	
T1	Block Chain: Blueprint for a new economy, Melanie Swan	
	O'Reilly, 2015.	<i></i>
T2	Block Chain: The Block Chain for Beginners- Guide to Block	ock
12	Chain Technology and Leveraging Block Chain Programm	
	Josh Thompsons	6,
R1	Block Chain Basics, Daniel Drescher, Apress; 1st edition, 2	2017
R2	Block Chain and Crypto Currencies, Anshul Kaushik, Kha	
IX2	Publishing House, Delhi.	
R3	Mastering Block Chain: Distributed Ledger Technology,	
KJ	Decentralization and Smart Contracts Explained, Imran Bh	achir
	Packt Publishing.	1451111,
W1	ü	
	https://www.edx.org/learn/blockchain	
W2	https://www.coursera.org/courses?query=blockchain	

Cours	Course Outcomes: On completion of this course, students can	
CO1	Understand block chain technology.	
CO2	Develop block chain-based solutions	
CO3	Write smart contract using Hyperledger Fabric and Ethereum	
	frameworks.	

CO4	Build and deploy block chain application for on premise and cloud-based architecture.
CO5	Integrate ideas from various domains and implement them.

QUA	NTUM COMPUTING		
Subject Code	18XXCTOXXXX	IA Marks	30
Number of Lecture	03	Exam	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam	03
Hours		Hours	
	Credits – 03		
Course Objectives:			
The learning objectives of the			
	the fundamentals of qua		
processing, include		tation, q	uantum
	nantum information theory.		TT
Unit -1:Introduction to Qu			Hours
Motivation for studying Qu			09
industry, Origin of Quantu		of major	
concepts in Quantum Comp	-		
Unit -2 :Math Foundation			
Matrix algebra- Basic vector		_	09
and Hilbert spaces, matrice			
projectors, dirac notation, E		or	
Unit – 3: Building Blocks			
Architectures of a Quantum		•	
bit system of information r			
qubits states, Quantum s		_	
entanglement, Useful sta		orithmic	10
perceptive, Operations on			
circuits, Programming me			
	ed on classical compute	-	
performed on Quantum com	puter, Moving data betweer	n bits and	
qubits.			
Unit – 4: Quantum Algori			
Amplitude amplification, (10
Kick-back, Quantum Phase	estimation, Quantum Walk	S	-

Unit – 5: Algorithms

Shor's Algorithm, Grover's Algorithm, Deutsch's Algorithm,	
Deutsch-Jozsa Algorithm, IBM Quantum Experience, Microsoft	10
Q, Rigetti PyQuil	

Text	Text(T) / Reference(R) Books:	
T1	Quantum Computation and Quantum Information, Michael A.	
	Nielsen, Cambridge University Press.	
R1	Quantum Computation Explained, David Mc Mahon, Wiley	
W1	https://quantumcurriculum.mit.edu/	
W2	https://www.coursera.org/courses?query=quantum%20computing	

Cours	Course Outcomes: On completion of this course, students can	
CO1	To explain the working of Quantum computing program.	
CO2	To explain architecture and program model.	
CO3	Develop Quantum logic gate circuits	
CO4	Develop quantum algorithm	
CO5	Program Quantum algorithm on major toolkits.	

VIRTUAL REALITY			
Subject Code	18XXCTOXXXX	IA Marks	30
Number of Lecture	03	Exam	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam	03
Hours		Hours	

Credits - 03

- 1. Understand how the design of VR technology relates to human perception and cognition.
- 2. Discuss applications of VR to the conduct of scientific research, training, and industrial design.
- 3. Gain first-hand experience with using virtual environment technology, including 3D rendering software, tracking hardware, and input/output functions for capturing user data.
- 4. Learn the fundamental aspects of designing and implementing rigorous empirical experiments using VR.
- Learn about multimodal virtual displays for conveying and presenting information and techniques for evaluating good and bad virtual interfaces.

Unit -1: Virtual reality and Virtual Environment	Hours
Introduction, Computer graphics, Real time computer graphics, flight simulation, virtual environment requirement, benefits of virtual reality, historical development of VR, scientific landmark. 3D Commuter Graphics: Introduction, virtual world space, positioning the virtual observer, perspective projection, human vision, stereo perspective projection, 3D clipping, Colour theory, simple 3D modelling, Illumination models, reflection models, shading algorithms, radiosity, hidden surface removal, realism- stereographic image.	10
Unit -2 :Geometric Modelling	
Introduction, from 2D to 3D, 3D space curves, 3D boundary representation. Geometric transformation: Introduction, frames to reference, modelling transformations, instances, picking, flying, scaling the VE, Collision and detection. Generic VR system: Virtual environment, computer environment, VR technology- models of interaction, VR systems.	10

Unit – 3:Animating the Virtual Environment	
Introduction, the dynamics of numbers, linear and non-linear and non-linear interpolation, the animation of objects, linear and non-linear translation, shape & object in between, free from deformation, particle system. Physical Simulation: Objects falling in a gravitational field, rotating wheels, elastic collisions, projectiles, simple pendulum, springs, flight dynamics of an aircraft	09
Unit – 4:Human Factors	
the eye, the ear, the somatic senses. VR Hardware: Sensor hardware, head-coupled displays, acoustic hardware, integrated VR systems. VR Software: Modelling virtual world, physical simulation, VR toolkits, Introduction to VRML.	09
Unit – 5:VR Applications	
Shor's Algorithm, Grover's Algorithm, Deutsch's Algorithm, Deutsch-Jozsa Algorithm, IBM Quantum Experience, Microsoft Q, Rigetti PyQuil	12

Text(T) / Reference(R) Books:		
T1	Virtual Reality Systems, John Vince, Pearson Education Asia,	
	2007.	
T2	Augmented and Virtual Reality, Anand R, Khanna Publishing	
	House. Delhi	
R1	Visualizations of Virtual Reality, Adams, Tata Mc Graw Hill,	
	2000	
R2	Virtual Reality Technology, Grigore C. Burdea, Philippe Coieffet,	
	Wiley Inter Science, 2 nd edition, 2006.	
W1	https://www.coursera.org/courses?query=virtual%20reality	
W2	https://www.classcentral.com/tag/virtual-reality	
Cour	se Outcomes: On completion of this course, students can	
CO1	Understand geometric modelling	
CO2	Understand Virtual environment	
CO3	Study about Virtual Hardware and Software	
CO4	Study about Software needed for developing virtual reality	
	environment.	
CO5	Develop Virtual Reality applications.	

DATA STRUCTURES THROUGH C			
Subject Code	18XXCTOXXXX	IA Marks	30
Number of Lecture Hours/Week	03	Exam Marks	70
Total Number of Lecture	48	Exam	03
Hours	Credita 02	Hours	

Credits – 03

Course Objectives:

- 1. Operations on linear data structures and their applications.
- 2. The various operations on linked lists.
- 3. The basic concepts of Trees, Traversal methods and operations.
- 4. Concepts of implementing graphs and its relevant algorithms.
- 5. Sorting and searching algorithms.

5. Softing and searching algorithms.	**
Unit -1: INTRODUCTION TO DATA STRUCTURE	Hours
Data Management concepts, Data types – primitive and non-primitive, Performance Analysis and Measurement (Time and space analysis of algorithms-Average, best- and worst-case analysis), Types of Data Structures- Linear & Non-Linear Data Structures. Sorting and Searching:	10
Sorting – Bubble Sort, Selection Sort, Quick Sort,	
Merge Sort Searching -Sequential Search and	
Binary Search	
Unit -2 :LINEAR DATA STRUCTURE	
Array: Representation of arrays, Applications of arrays, sparse matrix and its representation Stack: Stack-Definitions & Concepts, Operations On Stacks, Applications of Stacks, Polish Expression, Reverse Polish Expression And Their Compilation, Recursion. Queue: Representation Of Queue, Operations On Queue, Circular Queue, Double Ended Queue, Applications of Queue.	10
Unit – 3: LINKED LIST	

Linked List: Singly Linked List, Doubly Linked list, Circular linked list, Linked implementation of Stack, Linked implementation of Queue, Applications of linked list.	09
Unit – 4:NONLINEAR DATA STRUCTURE	
Tree-Definitions and Concepts, Representation of binary tree, Binary tree traversal (Inorder, postorder, preorder), Binary search trees, Conversion of General Trees To Binary Trees, Applications of Trees.	09
Unit – 5:GRAPH, HASHING AND FILE STRUCTURES	
Graph-Matrix Representation Of Graphs, Elementary Graph operations, (Breadth First Search, Depth First Search, Spanning Trees, Shortest path, Minimal spanning tree) Hashing: The symbol table, Hashing Functions, Collision Resolution Techniques, File Structure: Concepts of fields, records and files, Sequential, Indexed and Relative/Random File Organization, Indexing structure for index	10
files, hashing for direct files, Multi-Key file organization and access methods.	

Text	Text(T) / Reference(R) Books:	
T1	Data Structures using C -By Reema Thareja - OXFORD Higher Publication	
T2	Data Structures using C & C++ -By Ten Baum Publisher – Prenctice-Hall International	
R1	Fundamentals of Computer Algorithms by Horowitz, Sahni,Galgotia Pub. 2001 ed	
R2	Fundamentals of Data Structures in C++-By Sartaj Sahani.	
R3	Data Structures: A Pseudo-code approach with C -By Gilberg & Forouzan Publisher Thomson Learning	
W1	https://www.coursera.org/specializations/data-structures-algorithms	
W2	https://online-learning.harvard.edu/course/data-structures-and-algorithms	

Cour	se Outcomes: On completion of this course, students can
CO1	Choose appropriate data structure as applied to specified problem definition.
CO2	Handle operations like searching, insertion, deletion, traversing mechanism etc. on various data structures
CO3	Apply concepts learned in various domains like DBMS
CO4	Apply concepts learned in various domains like compiler construction
CO5	Use linear and non-linear data structures like stacks, queues , linked list

DESIGNING DATABASE MANAGEMENT SYSTEMS			
Subject Code	18XXCTOXXXX	IA Marks	30
Number of Lecture	03	Exam	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam	03
Hours		Hours	

Credits – 03

- 1.To introduce about database management systems
- 2.To give a good formal foundation on the relational model of data and usage of Relational Algebra
- 3.To introduce the concepts of basic SQL as a universal Database language
- 4.To demonstrate the principles behind systematic database design approaches by covering conceptual design, logical design through normalization
- 5. To provide an overview of database transactions and concurrency control.

Unit -1: Database system architecture	
Introduction to Databases: Characteristics of the Database	
Approach, Advantages of using the DBMS Approach, A Brief	
History of Database Applications. Overview of Database	10
Languages and Architectures: Data Models, Schemas and	
Instances, Three-Schema Architecture and Data Independence,	
Database Users , Architecture for DBMS.	
Unit -2 : E-R Models	
The E-R Models, The Relational Model, Introduction to	
Database Design, Database Design and Er Diagrams, Entities	
Attributes, and Entity Sets, Relationship and Relationship Sets,	10
Conceptual Design with the Er Models, The Relational Model	
Integrity Constraints Over Relations, Key Constraints, Foreign	
Key Constraints, General Constraints.	
Unit - 3: Relational Algebra	
Relational Algebra, Selection and Projection, Set Operation,	10
Renaming, Joins, Division, More Examples of Queries,	

Relational Calculus: Tuple Relational Calculus, Domain Relational Calculus. The Form of Basic SQL Query, Union, Intersect, and Except, Nested Queries, Aggregate Operators, Null Values, Complex Integrity Constraints in SQL, Triggers and Active Database. Unit - 4: Normalization Purpose of Normalization or schema refinement, concept of functional dependency, normal forms based on functional dependency (1NF, 2NF and 3 NF), concept of surrogate key, Boyce-Codd normal form (BCNF), Lossless join and dependency preserving decomposition, Fourth normal form(4NF). Unit - 5: Transaction Management Transaction, properties of transactions, transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks, Concurrency control with time stamp ordering: Wait/Die and		
The Form of Basic SQL Query, Union, Intersect, and Except, Nested Queries, Aggregate Operators, Null Values, Complex Integrity Constraints in SQL, Triggers and Active Database. Unit - 4: Normalization Purpose of Normalization or schema refinement, concept of functional dependency, normal forms based on functional dependency (1NF, 2NF and 3 NF), concept of surrogate key, Boyce-Codd normal form (BCNF), Lossless join and dependency preserving decomposition, Fourth normal form(4NF). Unit - 5: Transaction Management Transaction, properties of transactions, transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,	Relational Calculus: Tuple Relational Calculus, Domain	
Nested Queries, Aggregate Operators, Null Values, Complex Integrity Constraints in SQL, Triggers and Active Database. Unit - 4: Normalization Purpose of Normalization or schema refinement, concept of functional dependency, normal forms based on functional dependency (1NF, 2NF and 3 NF), concept of surrogate key, Boyce-Codd normal form (BCNF), Lossless join and dependency preserving decomposition, Fourth normal form(4NF). Unit - 5: Transaction Management Transaction, properties of transactions, transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,	Relational Calculus.	
Unit - 4: Normalization Purpose of Normalization or schema refinement, concept of functional dependency, normal forms based on functional dependency (1NF, 2NF and 3 NF), concept of surrogate key, Boyce-Codd normal form (BCNF), Lossless join and dependency preserving decomposition, Fourth normal form(4NF). Unit - 5: Transaction Management Transaction, properties of transactions, transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,	The Form of Basic SQL Query, Union, Intersect, and Except,	
Unit - 4: Normalization Purpose of Normalization or schema refinement, concept of functional dependency, normal forms based on functional dependency (1NF, 2NF and 3 NF), concept of surrogate key, Boyce-Codd normal form (BCNF), Lossless join and dependency preserving decomposition, Fourth normal form(4NF). Unit - 5: Transaction Management Transaction, properties of transactions, transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,	Nested Queries, Aggregate Operators, Null Values, Complex	
Purpose of Normalization or schema refinement, concept of functional dependency, normal forms based on functional dependency (1NF, 2NF and 3 NF), concept of surrogate key, Boyce-Codd normal form (BCNF), Lossless join and dependency preserving decomposition, Fourth normal form(4NF). Unit - 5: Transaction Management Transaction, properties of transactions, transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,	Integrity Constraints in SQL, Triggers and Active Database.	
functional dependency, normal forms based on functional dependency (1NF, 2NF and 3 NF), concept of surrogate key, Boyce-Codd normal form (BCNF), Lossless join and dependency preserving decomposition, Fourth normal form(4NF). Unit - 5: Transaction Management Transaction, properties of transactions, transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,	Unit - 4: Normalization	
dependency (1NF, 2NF and 3 NF), concept of surrogate key, Boyce-Codd normal form (BCNF), Lossless join and dependency preserving decomposition, Fourth normal form(4NF). Unit - 5: Transaction Management Transaction, properties of transactions, transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,	Purpose of Normalization or schema refinement, concept of	
Boyce-Codd normal form (BCNF), Lossless join and dependency preserving decomposition, Fourth normal form(4NF). Unit - 5: Transaction Management Transaction, properties of transactions, transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,	functional dependency, normal forms based on functional	
Boyce-Codd normal form (BCNF), Lossless join and dependency preserving decomposition, Fourth normal form(4NF). Unit - 5: Transaction Management Transaction, properties of transactions, transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,	dependency (1NF, 2NF and 3 NF), concept of surrogate key,	00
dependency preserving decomposition, Fourth normal form(4NF). Unit - 5: Transaction Management Transaction, properties of transactions, transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,		09
transaction, properties of transactions, transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,	1 -	
Unit - 5: Transaction Management Transaction, properties of transactions, transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,		
Transaction, properties of transactions, transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,	Unit - 5: Transaction Management	
transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,	<u> </u>	
save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,		
data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,	transaction management with SQL using commit rollback and	
control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,	save point. Concurrency control for lost updates, Uncommitted	
control with locking methods, lock granularity, lock types, two phase locking for ensuring serializability, deadlocks,	data, inconsistent retrievals and the Scheduler. Concurrency	00
	control with locking methods, lock granularity, lock types, two	09
	1.	
Wound/Wait Schemes, Database Recovery management.		

Tex	Text(T) / Reference(R) Books:		
T	In Introduction to Database Systems, CJDate, Pearson.		
1			
T	Database Management Systems,3rdEdition,Raghurama Krishnan,		
2	Johannes Gehrke, TATA Mc Graw Hill.		
T	Database Systems-The Complete Book,H GMolina,J DUllman,J		
3	WidomPearson.		
T	Database Management Systems,6/e Ramez Elmasri, Shamkant B.		
4	Navathe, PEA		
R	DatabaseSystemsdesign,Implementation,andManagement,7thEditio		
1	n,PeterRob&CarlosCoronel		
R	Database System Concepts, 5th edition, Silberschatz, Korth, TMH		
2			
R	The Database Book Principles & Practice Using Oracle/MySQL,		
3	Narain Gehani, University Press.		

W	https://onlinecourses.nptel.ac.in/noc18_cs15/preview
1	
W	https://www.coursera.org/courses?query=database
2	

Cours	Course Outcomes: On completion of this course, students can			
CO1	Understand the basic elements of a relational database			
	management system.			
CO2	Draw entity relationship and convert entity relationship diagrams			
	into RDBMS.			
CO3	Create, maintain, and manipulate a relational database using SQL.			
CO4	Designs and applies normalization techniques for logical schema			
	model.			
CO5	Solves concurrent issues and problems through locking			
	mechanism.			

OPERATING SYSTEMS CONCEPTS			
Subject Code	18XXCTOXXXX	IA Marks	30
Number of Lecture	03	Exam	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam	03
Hours		Hours	

Course Objectives:

The learning objectives of this course are:

- Introduce the basic concepts of operating systems, its functions and services.
- 2. To provide the basic concepts of process management and synchronization.
- 3. Familiarize with deadlock issues.
- 4. Understand the various memory management skills.
- 5. Give exposure over I/O systems and mass storage structures.

Unit -1: Operating Systems Overview	Hours
Computer system organization, Operating system structure, Process, memory, storage management, Protection and security, Distributed systems, Computing Environments, Open-source operating systems, OS services, User operating-system interface.	09
Unit -2 :System Calls & IPC	
System calls, Types, System programs, OS structure, OS generation, System Boot Process concept, scheduling (Operations on processes, Cooperating processes, Inter-process communication), Multi-threading models	09
Unit - 3: Process Management	
Basic concepts, Scheduling criteria, Scheduling algorithms, Thread scheduling, Multiple processor scheduling Operating system, Algorithm Evaluation, The critical section problem, Peterson's solution, Synchronization hardware, Semaphores, Classic problems of synchronization, Critical regions, Monitors.	10
Unit - 4:Memory Management & Dead lock	

System model, Deadlock characterization, Methods for handling	
deadlocks, Deadlock Prevention, Deadlock Avoidance,	1
Deadlock detection, Recovery from deadlock.	1
Storage Management: Swapping, Contiguous memory	10
allocation, Paging, Segmentation Virtual Memory Background,	
Demand paging, copy on write, Page replacement and various	1
Page replacement algorithms, Allocation of frames, Thrashing.	
Unit - 5:I/O Systems	
File concept, Access methods, Directory structure, Filesystem	
mounting, Protection, Directory implementation, Allocation	10
methods, Free-space management, Disk scheduling, Disk	10
management, Swap-space management, Protection.	İ

Text	Text(T) / Reference(R) Books:		
T1	Operating System Concepts Essentials, Abraham Silberschatz,		
	Peter B. Galvin, Greg Gagne, John Wiley & Sons Inc., 2010.		
T2	Operating System Concepts, 9th Edition, Abraham Silberschatz,		
	Peter Baer Galvin and Greg Gagne, John Wiley and Sons Inc., 2012		
Т3	Operating Systems, Second Edition, S Halder, Alex A Aravind,		
	Pearson Education, 2016		
T4	Operating Systems – Internals and Design Principles, 7th Edition,		
	William Stallings, Prentice Hall, 2011		
R1	Modern Operating Systems, Second Edition, Andrew S.		
	Tanenbaum, Addison Wesley, 2001.		
R2	Operating Systems: A Design-Oriented Approach, Charles		
	Crowley, Tata McGraw Hill Education, 1996.		
R3	Operating Systems: A Concept-based Approach, Second Edition,		
	D M Dhamdhere, Tata McGraw-Hill Education, 2007		
R4	Operating Systems: Internals and Design Principles, Seventh		
	Edition, William Stallings, Prentice Hall, 2011		
W1	https://www.coursera.org/courses?query=operating%20system		
W2	https://onlinecourses.nptel.ac.in/noc16_cs10/preview		

Cours	Course Outcomes: On completion of this course, students can		
CO1	Demonstrate knowledge on Computer System organization and		
	Operating system services.		
CO2	Design solutions for process synchronization problems by using		
	System calls and Inter process communication.		
CO3	Identify the functionality involved in process management		
	concepts like scheduling and synchronization.		
CO4	Design models for handling deadlock and perform memory		
	management.		
CO5	Analyze services of I/O subsystems and mechanisms of security		
	& protection.		

	R PROGRAMMING		
Subject Code	18XXCTOXXXX	IA Marks	30
Number of Lecture	03	Exam	70
Hours/Week	40	Marks	02
Total Number of Lecture Hours	48	Exam Hours	03

Course Objectives:

The learning objectives of this course are:

- 1. Use R for statistical programming, computation, graphics, and modeling.
- 2. Write functions and use R in an efficient way.
- 3. Fit some basic types of statistical models.
- 4. Use R in their own research.
- 5. Be able to expand their knowledge of R on their own.

Unit -1: Introduction	Hours
How to run R, R Sessions and Functions, Basic Math, Variables,	
Data Types,	09
Vectors, Conclusion, Advanced Data Structures, Data Frames,	
Lists, Matrices, Arrays, Classes.	
Unit -2:	
R Programming Structures, Control Statements, Loops,-	
Looping Over Nonvector Sets,- If-Else, Arithmetic and Boolean	
Operators and values, Default Values for Argument, Return	10
Values, Deciding Whether to explicitly call return- Returning	10
Complex Objects, Functions are Objective, No Pointers in R,	
Recursion, A Quicksort Implementation-Extended Extended	
Example: A Binary Search Tree.	
Unit – 3:Math and Simulation in R	
Doing Math and Simulation in R, Math Function, Extended	
Example Calculating Probability- Cumulative Sums and	
Products-Minima and Maxima- Calculus, Functions Fir	
Statistical Distribution, Sorting, Linear Algebra Operation on	10
Vectors and Matrices, Extended Example: Vector cross Product-	
Extended Example: Finding Stationary Distribution of Markov	
Chains, Set Operation, Input /out put, Accessing the Keyboard	
and Monitor, Reading and writer Files	

Unit – 4:Graphics	
Creating Graphs, The Workhorse of R Base Graphics, the plot() Function – Customizing Graphs, Saving Graphs to Files, Probability Distributions, Normal Distribution- Binomial Distribution- Poisson Distributions Other Distribution, Basic Statistics, Correlation and Covariance, T-Tests,-ANOVA.	10
Unit – 5:Linear Models	
Simple Linear Regression, -Multiple Regression Generalized Linear Models, Logistic Regression, - Poisson Regression- other Generalized Linear Models-Survival Analysis, Nonlinear Models, Splines- Decision- Random Forests	09

Text	Text(T) / Reference(R) Books:		
T1	The Art of R Programming, Norman Matloff, Cengage Learning		
T2	R for Everyone, Lander, Pearson		
R1	R Cookbook, PaulTeetor, Oreilly		
R2	R in Action, Rob Kabacoff, Manning		
W1	https://www.edx.org/learn/r-programming		
W2	https://www.coursera.org/learn/r-programming		

Cours	Course Outcomes: On completion of this course, students can		
CO1	List motivation for learning a programming language		
CO2	Access online resources for R and import new function packages		
	into the R workspace		
CO3	Import, review, manipulate and summarize data-sets in R		
CO4	Explore data-sets to create testable hypotheses and identify		
	appropriate statistical tests		
CO5	Perform appropriate statistical tests using R Create and edit		
	visualizations		

PYTHON PROGRAMMING			
Subject Code	18XXCTOXXXX	IA Marks	30
Number of Lecture	03	Exam	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam	03
Hours		Hours	

Course Objectives:

The learning objectives of this course are:

- 1. Introduction to Scripting Language.
- 2. Exposure to various problems solving approaches of computer science.

Unit -1: Introduction	Hours
History of Python, Need of Python Programming, Applications	
Basics of Python Programming Using the REPL(Shell),	09
Running Python Scripts, Variables, Assignment, Keywords,	
Input-Output, Indentation	
Unit -2 : Types, Operators and Expressions	
Types - Integers, Strings, Booleans; Operators- Arithmetic	
Operators, Comparison (Relational) Operators, Assignment	
Operators, Logical Operators, Bitwise Operators, Membership	
Operators, Identity Operators, Expressions and order of	10
evaluations Control Flow- if, if-elif-else, for, while, break,	
continue, pass. Data Structures Lists - Operations, Slicing,	
Methods; Tuples, Sets, Dictionaries, Sequences.	
Comprehensions.	
Unit – 3: Functions	
Defining Functions, Calling Functions, Passing Arguments,	
Keyword Arguments, Default Arguments, Variable-length	
arguments, Anonymous Functions, Fruitful Functions(Function	
Returning Values), Scope of the Variables in a Function - Global	10
and Local Variables. Modules: Creating modules, import	
statement, from. Import statement, name spacing, Python	
packages, Introduction to PIP, Installing Packages via PIP,	
Using Python Packages	

Unit – 4: Object Oriented Programming in Python

Classes, 'self variable', Methods, Constructor Method,	
Inheritance, Overriding Methods, Data hiding, Error and	
Exceptions: Difference between an error and Exception,	10
Handling Exception, try except block, Raising Exceptions, User	
Defined Exceptions	
Unit – 5: Brief Tour of the Standard Library	
Operating System Interface - String Pattern Matching,	
Mathematics, Internet Access, Dates and Times, Data	
Compression, Multithreading, GUI Programming, Turtle	00
Graphics Testing: Why testing is required?, Basic concepts of	09
testing, Unit testing in Python, Writing Test cases, Running	
Tests.	

Text	Text(T) / Reference(R) Books:			
T1	Python Programming: A Modern Approach, Vamsi Kurama,			
	Pearson			
T2	Learning Python, Mark Lutz, Orielly			
R1	Think Python, Allen Downey, Green Tea Press			
R2	Core Python Programming, W.Chun, Pearson			
R3	Introduction to Python, Kenneth A. Lambert, Cengage			
W1	https://www.coursera.org/courses?query=python			
W2	https://www.edx.org/learn/python			

Course Outcomes: On completion of this course, students can		
CO1	Making Software easily right out of the box	
CO2	Experience with an interpreted Language	
CO3	To build software for real needs.	
CO4	Prior Introduction to testing software	
CO5	Experience with implementation in current technologies	

		JAVA PROGRAMMING			
18XXCTOXXXX	IA Marks	30			
03	Exam	70			
	Marks				
48	Exam	03			
	Hours				
	03	03 Exam Marks 48 Exam Hours			

Course Objectives:

The learning objectives of this course are:

- 1. Understanding the OOP's concepts, classes and objects, threads, files, applets, swings and act.
- 2. This course introduces computer programming using the JAVA programming language with object-oriented programming principles.
- 3. Emphasis is placed on event-driven programming methods, including creating and manipulating objects, classes, and using Java for network level programming and middleware development.

Unit -1: Introduction to OOP	
procedural programming language and object-oriented language, principles of OOP, applications of OOP, history of java, java features, JVM, program structure. Variables, primitive data types, identifiers, literals, operators, expressions, precedence rules and associativity, primitive type conversion and casting, flow of control.	10
Unit -2 :Classes and objects	
Classes and objects, class declaration, creating objects, methods, constructors and constructor overloading, garbage collector, importance of static keyword and examples, this keyword, arrays, command line arguments, nested classes.	
Unit – 3:Inheritance	
Inheritance, types of inheritance, super keyword, final keyword, overriding and abstract class. Interfaces, creating the packages, using packages, importance of CLASSPATH and java.lang package. Exception handling, importance of try, catch, throw, throws and finally block, userdefined exceptions, Assertions	10
Unit – 4:Multithreading	

Introduction, thread life cycle, creation of threads, thread	
priorities, thread	09
synchronization, communication between threads. Reading data	09
from files and writing data to files, random access file.	
Unit – 5:Applet	
Applet class, Applet structure, Applet life cycle, sample Applet	
programs. Event handling: event delegation model, sources of	
event, Event Listeners, adapter classes, inner classes. AWT:	10
introduction, components and containers, Button, Label,	10
Checkbox, Radio Buttons, List Boxes, Choice Boxes, Container	
class, Layouts, Menu and Scrollbar.	

Text(T) / Reference(R) Books:			
T1	The complete Reference Java, 8th edition, Herbert Schildt, TMH		
T2	Programming in JAVA, Sachin Malhotra, SaurabhChoudary,		
	Oxford		
R1	Introduction to java programming, 7th edition by Y Daniel Liang,		
	Pearson		
W1	https://www.coursera.org/courses?query=java		
W2	https://www.udemy.com/java-tutorial/		

Course Outcomes: On completion of this course, students can			
CO1	Understand Java programming concepts and utilize Java		
	Graphical User Interface in Program writing.		
CO2	Write, compile, execute and troubleshoot Java programming for		
	networking concepts.		
CO3	Build Java Application for distributed environment.		
CO4	Design and Develop multi-tier applications.		
CO5	Identify and Analyze Enterprise applications.		

APP TECHNOLOGIES			
Subject Code	18XXCTOXXXX	IA Marks	30
Number of Lecture	03	Exam	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam	03
Hours		Hours	
Credits – 03			

Course Objectives:

The learning objectives of this course are:

 To provide in depth knowledge and hands on experience in application development, the latest trends and features.

Unit -1: Android Programming Environment	
Android programming environment, linking activities using	09
intents, calling built-in applications using intents.	
Unit -2:User Interface	
Creating the user interface programmatically, Listening for UI	
notifications, build basic views, build picker views, build list	10
views, Using image views, Using menus with views, Saving and	
loading user preferences	
Unit – 3:Data	
Persisting data to files, Creating and using databases, Study	10
Session, sharing data in android, Using a content provider,	
Creating a content provider	
Unit – 4: Networking	
SMS messaging, sending emails, Networking, displaying maps,	10
Getting location data	10
Unit – 5: Services	
Creating your own services, communicating between a service	
and an Activity, Binding Activities to Services, A complete lab	09
work for Android service development, Deploy APK files.	

Text	Text(T) / Reference(R) Books:	
T1	Beginning Android Application Development, Wei-Meng Lee, 1st	
	Ed, Wiley Publishing.	
T2	Android: A Programmers Guide, J. F. DiMarzio, McGraw Hill	
	Education (India) Private Limited.1st Edition.	
R1	Android for Programmers: An App-Driven Approach, Paul Deitel,	
	1st Edition, Pearson India	
R2	Beginning Android 4 Application Development, Wei-Meng Lee,	
	Wiley India Pvt Ltd	
W1	https://www.coursera.org/browse/computer-science/mobile-and-	
	web-development	
W2	https://in.udacity.com/course/new-android-fundamentalsud851	

Course Outcomes: On completion of this course, students can	
CO1	Demonstrate their understanding of the fundamentals of Android
	operating systems
CO2	Demonstrate their skills of using Android software development
	tools
CO3	Demonstrate their ability to develop software with reasonable
	complexity on mobile platform
CO4	Demonstrate their ability to deploy software to mobile devices
CO5	Demonstrate their ability to debug programs running on mobile
	devices

WEB TECHNOLOGIES			
Subject Code	18XXCTOXXXX	IA Marks	30
Number of Lecture	03	Exam	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam	03
Hours		Hours	

Credits - 03

Course Objectives:

The learning objectives of this course are:

• This course is designed to introduce students with no programming experience to the programming languages and techniques associated with the World Wide Web. The course will introduce web-based media-rich programming tools for creating interactive web pages.

Unit-1: HTML	Hours
HTML: Basic Syntax, Standard HTML Document Structure,	
Basic Text Markup, Html styles, Elements, Attributes, Heading,	
Layouts, Html media, Iframes Images, Hypertext Links, Lists,	
Tables, Forms, GET and POST method, HTML 5, Dynamic	10
HTML.	
CSS: Cascading style sheets, Levels of Style Sheets, Style	
Specification Formats, Selector Forms, The Box Model,	
Conflict Resolution, CSS3.	
Unit -2: JSON	
Introduction to JSON: JSON, Syntax, Data Types, Schema,	
Security Concerns, JSON Vs XML, the JavaScript XML Http	09
Request and Web APIs, JSON and Client-Side Frameworks,	09
JSON and NoSQL, JSON on the server side.	
Unit –3: YAML	
Introduction to YAML: YAML, Syntax, Structure, indentation	9
in YAML documents, YAML vs JSON and XML, data types,	9
Using advanced features like anchors in a YAML.	
Unit -4: PHP	
PHP Programming: Introduction to PHP, Creating PHP script,	
Running PHP script.	10
Working with variables and constants: Using variables,	
Using constants, Data types, Operators.	

Controlling program flow: Conditional statements, Control	
statements, Arrays, functions.	
Unit – 5: Laravel	
Introduction to Laravel, Features, routing, controllers, views,	10
Blade template, migration, Laravel Database.	10

Text	Text(T) / Reference(R) Books:		
T1	Programming the World Wide Web, 7th Edition, Robet W		
	Sebesta, Pearson, 2013		
T2	Web Technologies, 1st Edition 7th impression, Uttam K Roy,		
	Oxford, 2012.		
Т3	Introduction to JavaScript by Lindsay Bassett, 2015.		
T4	Introduction to YAML: Demystifying YAML Data Serialization		
	Format		
	by <u>Tarun Telang</u>		
T5	Full-Stack Vue.Js 2 and Laravel 5: Bring the frontend and backend		
	together with Vue, Vuex, and Laravel		
R1	Programming world wide web, Sebesta, Pearson		
R2	An Introduction to web Design and Programming, Wang,		
	Thomson		
W1	https://www.edx.org/learn/web-development		
W2	https://www.javatpoint.com/what-is-json		
W3	https://www.javatpoint.com/yaml-scalars		
W4	https://www.javatpoint.com/laravel-blade-template		

Course Outcomes: On completion of this course, students can		
CO1	To develop a dynamic webpage by the use of HTML	
CO2	To develop a dynamic webpage by the use of CSS	
CO3	To develop a dynamic webpage by the use of JSON	
CO4	To develop a dynamic webpage by the use of YML	
CO5	Build web applications using PHP	
CO6	To develop a dynamic webpage by the use of Laravel	

10MMCTOMMAN		
18XXCTOXXXX	IA Marks	30
03	Exam	70
	Marks	
48	Exam	03
	Hours	
	03	03 Exam Marks 48 Exam Hours

Course Objectives:

The learning objectives of this course are:

- 1. To have a basic proficiency in a traditional AI language including an ability to write simple to intermediate programs and an ability to understand code written in that language
- 2. To have an understanding of the basic issues of knowledge representation and blind and heuristic search, as well as an understanding of other topics such as minimax, resolution, etc. that play an important role in AI programs
- 3. To have a basic understanding of some of the more advanced topics of AI such as learning, natural language processing, agents and robotics, expert systems, and planning.

Unit -1: Introduction to artificial intelligence	Hours	
Introduction, history, intelligent systems, foundations of AI,	09	
applications, tic-tac-tie game playing, development of AI	0,5	
languages, current trends in AI.		
Unit -2: Problem solving: state-space search and control stra	tegies	
Introduction, general problem solving, characteristics of	10	
problem, exhaustive searches, heuristic search techniques,	10	
iterative deepening a*, constraint satisfaction.		
Unit – 3:Problem reduction, Game playing		
Problem Reduction: Introduction, Problem reduction using AO*		
algorithm, Towers of Hanoi problem, Matrix Multiplication	10	
problem game playing, alpha-beta pruning, two-player perfect		
information games.		
Unit – 4: Logic Concepts & Knowledge Representation Techniques		
Logic Concepts: Introduction, propositional calculus,		
propositional logic, natural deduction system, axiomatic system,	10	
semantic tableau system in proportional logic, resolution	10	
refutation in proportional logic, predicate logic.		

Introduction to KR techniques, conceptual dependency theory, script structure, cyc theory, case grammars, semantic web.	
Unit – 5: Expert systems and its applications	
Introduction phases in building expert systems, expert system versus traditional systems, rule-based expert systems, blackboard systems, truth maintenance systems, application of expert systems, list of shells and tools.	09

Text	Text(T) / Reference(R) Books:	
T1	Artificial Intelligence- Saroj Kaushik, CENGAGE Learning	
T2	Artificial intelligence, A modern Approach, 2nded, Stuart Russel,	
	Peter Norvig, PEA	
T3	Artificial Intelligence- Rich, Kevin Knight, Shiv Shankar B Nair,	
	3rded, TMH	
T4	Introduction to Artificial Intelligence, Patterson, PHI	
R1	Artificial intelligence, structures and Strategies for Complex	
	problem solving, -George F Lugar, 5thed, PEA	
R2	Introduction to Artificial Intelligence, Ertel, Wolf Gang, Springer	
R3	Artificial Intelligence, A new Synthesis, Nils J Nilsson, Elsevier	
R4	AI: A Modern Approach, Stuart Russell and Peter Norvig,	
	Additional Readings: Marr, Bishop, occasionally others	
W1	https://www.edx.org/learn/artificial-intelligence	
W2	https://www.coursera.org/courses?query=artificial%20intelligence	

Course Outcomes: On completion of this course, students can		
CO1	To introduce basic concepts of AI with its working principles.	
CO2	To understand different kinds of heuristic search algorithms to get	
	feasible solution for AI problems.	
CO3	To understand problem reduction concepts using various problem reduction techniques. (Ex: Problem reduction using AO* algorithm, Towers of Hanoi problem, Matrix Multiplication problem)	
CO4	To understand various Knowledge Representation (KR) techniques	
CO5	To understand different kinds of Expert Systems.	

Open Elective Courses Offered by ECE To other Departments

Open Electives Courses Offered by the ECE to other Departments

S.No	Subject Code	Name of the subject	L	Т	P	Cr
1	18XXECOX0XA	VLSI Design	3	0	0	3
2	18XXECOX0XB	HDL Programming for IC Design	3	0	0	3
3	18XXECOX0XC	Principles of Communication Systems	3	0	0	3
4	18XXECOX0XD	Transducers and Sensors	3	0	0	3
5	18XXECOX0XE	Fundamentals of Microprocessors and Microcontrollers	3	0	0	3
6	18XXECOX0XF	Fundaments of Internet of Things	3	0	0	3
7	18XXECOX0XG	Fundamentals of Digital Image Processing	3	0	0	3
8	18XXECOX0XH	Signals and Systems	3	0	0	3

	VLSI DESIGN (Open Elective)		
Subject Code	18XXECOX0XA	Internal Marks	30
Number of Lecture Hours/Week	03	External Marks	70
Total Number of Lecture Hours	48	Exam Hours	03

Course Objectives:

- To learn about various fabrication steps of IC and electrical properties of MOSFET.
- To learn about specific rules to draw the stick diagrams and Layouts.
- 3. To analyze circuit concepts and to apply Scaling factors for Device parameters.
- 4. To learn concept of chip I/O and techniques of testability.
- 5. To learn about different FPGA designs and implementation

Unit -1	Hours
Introduction and Basic Electrical Properties of MOS Circuits: Introduction to IC technology, Fabrication process: nMOS, pMOS and CMOS. Ids versus Vds Relationships, Aspects of MOS transistor Threshold Voltage, MOS transistor Trans, Output Conductance and Figure of Merit. nMOS Inverter, Pull-up to Pull-down Ratio for nMOS inverter driven by another nMOS inverter, and through one or more pass transistors. Alternative forms of pull-up, The CMOS Inverter, Latch-up in CMOS circuits, Bi-CMOS Inverter, Comparison between CMOS and BiCMOS technology.	10
Unit -2	
MOS and Bi-CMOS Circuit Design Processes: MOS Layers, Stick Diagrams, Design Rules and Layout, General observations on the Design rules, 2µm Double Metal, Double Poly, CMOS/BiCMOS rules, 1.2µm Double Metal, Double Poly CMOS rules, Layout Diagrams of NAND and NOR gates and CMOS inverter, Symbolic Diagrams Translation to Mask Form.	10
Unit -3	

Total	70
T-4-1	48
FPGA.	
Spartan XL FPGA, Xilinx Spartan II FPGAs, Xilinx Vertex	
Altera Flex 10FPGA, Xilinx XC4000 series FPGA, Xilinx	
FPGA Technologies, FPGA families- Altera Flex 8000FPGA,	8
FPGA Design: FPGA design flow, Basic FPGA architecture,	
Unit – 5	
techniques.	
Techniques, Scan Based Techniques and Built-In Self-Test	
Controllability and Observability, Ad Hoc Testable Design	
Design for Testability: Fault types and Models,	10
Generation and Distribution.	10
Circuits, Output Circuits and L(di/dt) Noise, On-Chip Clock	
Chip Input and Output circuits: ESD Protection, Input	
Unit – 4	
Gate logic.	
supply voltage due to noise and current density. Switch logic,	
Limits due to sub threshold currents, Limits on logic levels and	
Scaling factors for device parameters, Limitations of scaling,	
Scaling of MOS Circuits: Scaling models and scaling factors,	
Capacitances, Choice of layers.	10
driving large capacitive loads, Propagation Delays, Wiring	10
Capacitance Calculations, The Delay Unit, Inverter Delays,	
Capacitance of Layers, Standard unit of capacitance, some area	
concept applied to MOS transistors and Inverters, Area	
Basic Circuit Concepts: Sheet Resistance, Sheet Resistance	
-	

On completion of the course student will be able to

- Elaborate the fabrication steps of IC and electrical properties of MOSFET.
- 2. Justify the concepts of design rules during the layout of a circuit.
- 3. Apply the circuit concepts and scaling factors for device parameters.
- 4. Analyze the concepts of chip I/O and techniques of testability.
- 5. Examine commercial architectures of FPGA.

Text Books:

- Kamran Eshraghian, Douglas and A. Pucknell and Sholeh Eshraghian, Essentials of VLSI Circuits and Systems, Prentice-Hall of India Private Limited, 2005 Edition.
- 2. Sung-Mo Kang, Yusuf Leblebici, CMOS Digital Integrated

Circuits Analysis and Design, Tata McGrawHill Education, 2003.

- Michael D. Ciletti, Advanced Digital Design with the Verilog HDL, Xilinx Design Series, Pearson Education
- 2. Analysis and Design of Digital Integrated Circuits in Deep Submicron Technology, 3rd edition, David Hodges.
- 3. A. Shanthi and A. Kavita, VLSI Design, New Age International Private Limited, 2006 First Edition.

HDL PROGRAMMING FOR IC DESIGN (Open Elective) Subject Code Internal 30 18XXECOX0XB Marks Number of Lecture 03 External 70 Hours/Week Marks Total Number of Lecture Exam 48 03 Hours Hours

Credits - 03

Course Objectives:

- 1. Learn different Verilog programming constructs.
- 2. Familiarize the different levels of abstraction in Verilog HDL.
- Construct digital circuits and corresponding RTL modeling using different styles along with test bench based verification.
- 4. Understand Verilog Tasks, Functions and Directives.
- 5. Understand timing and delay simulation.

Introduction to Verilog HDL: Verilog as HDL, Typical	
HDL flow, Top-Down and Bottom-up design methodology.	
Levels of Design Description, Simulation and Synthesis,	
Function Verification, Module definition. Difference between	10
module and module instances.	
Unit -2	
Language Constructs and Conventions: Keywords,	
Identifiers, White Space, Characters, Comments, Numbers,	10
Strings, Logic Values, Strengths, Data Types, Scalars and	
Vectors, Parameters, Operators.	
Unit -3	
Gate Level Modeling: Modeling using basic Verilog gate	
primitives, Array of Instances of Primitives, Design of Flip-	
Flops with Gate Primitives, Delay, Strengths and	
Construction Resolution	10
Modeling at Dataflow Level: Continuous Assignment	
Structure, delay specification, expressions, vectors, operators,	
operands, operator types	
Unit – 4	
Behavioral Level Modeling: Structured procedures, Initial	10
and Always statements, blocking and non-blocking statements,	10

delay control, generate statement, conditional statement, multiway branching, loops, sequential and parallel blocks.	
Unit – 5	
Switch Level Modeling: Basic transistor switches, CMOS Switches, bi-directional gates, time delays with switch primitives Tasks and Functions: Difference between tasks and functions, declaration, invocation, automatic tasks and functions.	8
Total	48

On completion of the course student will be able to

- Demonstrate knowledge on HDL design flow and identify the suitable abstraction level of a particular design
- 2. Memorizing the constructs and conventions used for Verilog programming
- 3. Design and develop the combinational and sequential circuits using dataflow modeling
- 4. Implement sequential logic circuits using behavioral modeling
- 5. Writing the programs more effectively using tasks and functions

Text Books:

- 1. Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Pearson Education, Second Edition
- 2. T.R.Padmanabhan, B Bala Tripura Sundari, "Design Through Verilog HDL", Wiley 2009

- Michael D Ciletti, "Advanced Digital Design with the Verilog HDL", Xilinx Design Series, PearsonEducation.
- 2. Stephen Brown, Zvonkoc Vranesic, "Fundamentals of Digital Logic with Verilog Design", TMH, 2nd Edition.
- 3. Donald E. Thomas, Philip R. Moorby, "The Verilog Hardware Description Language", Springer Science + Business Media, LLC, Fifth edition

PRINCIPLES OF COMMUNICATION SYSTEMS (Open Elective) Subject Code Internal 30 18XXECOX0XC Marks Number of Lecture 03 External 70 Hours/Week Marks Total Number of 48 Exam 03 Lecture Hours Hours

Credits - 03

Course Objectives:

- 1. Analyze the performance of angle modulated signals.
- Characterize analog signals in time domain as random processes and noise
- 3. Characterize the influence of channel on analog modulated signals
- 4. Determine the performance of analog communication systems in terms of SNR
- 5. Understand the concepts of noise and signal.

Unit -1	Hou
	rs
Amplitude modulation: Introduction, Amplitude Modulation:	
Time & Frequency – Domain description, switching modulator,	
Envelop detector.	
Double side band-suppressed carrier modulation: Time and	10
Frequency – Domain description, Ring modulator, Coherent	
detection, Costas Receiver, Quadrature Carrier Multiplexing.	
Single side and vestigial side band methods of modulation:	
SSB Modulation, VSB Modulation, Frequency Translation,	
Frequency-Division Multiplexing, Theme Example: VSB	
Transmission of Analog and Digital Television	
Unit -2	
Angle modulation: Basic definitions, Frequency Modulation:	
Narrow Band FM, Wide Band FM, Transmission bandwidth of	
FM Signals, Generation of FM Signals, Demodulation of FM	10
Signals, FM Stereo Multiplexing,	10
Phase-Locked Loop: Nonlinear model of PLL, Linear model of	
PLL, Nonlinear Effects in FM Systems. The Super-heterodyne	
Receiver	
Unit -3	•

Random variables & process: Introduction, Probability, Conditional Probability, Random variables, Several Random Variables. Statistical Averages: Function of a random variable, Moments, Random Processes, Mean, Correlation and Covariance function: Properties of autocorrelation function, Cross—correlation functions. Noise: ShotNoise, Thermalnoise, WhiteNoise, Noise Equivalent Bandwidt h, Noise Figure Unit - 4)
Variables. Statistical Averages: Function of a random variable, Moments, Random Processes, Mean, Correlation and Covariance function: Properties of autocorrelation function, Crosscorrelation functions. Noise: ShotNoise, Thermalnoise, WhiteNoise, Noise Equivalent Bandwidth, Noise Figure)
Moments, Random Processes, Mean, Correlation and Covariance function: Properties of autocorrelation function, Cross—correlation functions. Noise: ShotNoise, Thermalnoise, WhiteNoise, Noise Equivalent Bandwidt h, Noise Figure)
function: Properties of autocorrelation function, Cross—correlation functions. Noise: ShotNoise, Thermalnoise, WhiteNoise, Noise Equivalent Bandwidt h, Noise Figure)
correlation functions. Noise: ShotNoise, Thermalnoise, WhiteNoise, Noise Equivalent Bandwidt h, Noise Figure	
Noise: ShotNoise, Thermalnoise, WhiteNoise, Noise Equivalent Bandwidt h, Noise Figure	
ShotNoise,Thermalnoise,WhiteNoise,NoiseEquivalentBandwidt h,NoiseFigure	
h,NoiseFigure	
Unit – 4	
Noise in analog modulation: Introduction, Receiver Model,	
Noise in DSB-SC receivers, Noise in AM receivers, Threshold	
effect, Noise in FM receivers, Capture effect, FM threshold)
effect, FM threshold reduction, Pre-emphasis and De-emphasis in	
FM.	
Unit – 5	
Digital representation of an analog signals: Introduction, Why	
Digitize Analog Sources? The Sampling process, Pulse 8	
Amplitude Modulation, Time Division Multiplexing, Pulse-	
Position Modulation, Generation of PPM Waves, Detection of	
PPM Waves, The Quantization Process, Quantization Noise,	
Pulse Code Modulation: Sampling, Quantization, Encoding,	
Regeneration, Decoding, Filtering, Multiplexing	
Total 48	3

On completion of the course student will be able to

- Analyze the performance of analog modulation schemes in time and frequency domains.
- 2. Analyze the performance of angle modulated signals.
- Characterize analog signals in time domain as random processes and noise
- 4. Characterize the influence of channel on analog modulated signals
- 5. Determine the performance of analog communication systems in terms of SNR

Text Books:

- 1. H Taub& D. Schilling, Gautam Sahe, Principles of Communication Systems –TMH, 2007, 3rd Edition.
- 2. B.P. Lathi, Communication Systems-BSPublication, 20062.
- 3. Simon Haykin, Principles of Communication Systems –John Wiley, 2 nd Edition

Reference Books:

1. George Kennedy and Bernard Davis, Electronics & Communication

System –TMH 2004. R.P. Singh, SPSapre, Communication Systems–SecondEditionTMH,2007 2.

TRANSDUCERS AND SENSORS (Open Elective) Subject Code Internal 30 18XXECOX0XD Marks Number of Lecture 03 External 70 Hours/Week Marks Total Number of Lecture 48 03 Exam Hours Hours

Credits - 03

Course Objectives:

- Choose proper sensor comparing different standards and guidelines to make sensitive measurements of physical parameters like pressure, flow, acceleration, etc
- 2. Predict correctly the expected performance of various sensors
- 3. Locate different type of sensors used in real life applications and paraphrase their importance
- 4. Understand and analyze the characteristics of temperature sensors
- Set up testing strategies to evaluate performance characteristics of different types of sensors and transducers

Unit -1	Hours
Introduction: functional elements of an instrument, generalized performance characteristics of instruments – static characteristics, dynamic characteristics. Zero order, first order, second order instruments – step response, ramp response and impulse response. Response of general form of instruments to periodic input and to transient input Experimental determination of measurement system parameters, loading effects under dynamic conditions	10
Unit -2	
Transducers for motion and dimensional measurements: Relative displacement, translation and rotational resistive potentiometers, resistance strain gauges, LVDT, synchros, capacitance pickups, Piezo-electric transducers, electro-optical devices, nozzle – flapper transducers, digital displacement transducers, ultrasonic transducers. Magnetic and photoelectric pulse counting methods, relative acceleration measurements, seismic acceleration pickups, calibration of vibration pickups. Gyroscopic sensors	10
Unit -3	

TRANSDUCERS FOR FORCE MEASUREMENT: Bonded strain guage transducers, Photo-electric transducers, variable reluctance pickup, torque measurement dynamometers. TRANSDUCERS FOR FLOW MEASUREMENT: Hot wire and hot-film anemometers, Electro-magnetic flow meters, laser Doppler velocity meter TRANSDUCERS FOR PRESSURE MEASUREMENT: Manometers, elastic transducers, liquid systems, gas systems, very high pressure transducers. Thermal conductivity gauges, ionization gauges, microphone	10
Unit – 4	
TRANSDUCERS FOR TEMPERATURE MEASUREMENT: Thermal expansion methods, Thermometers (liquid in glass), pressure thermometers, Thermocouples, Materials configuration and techniques. Resistance thermometers, Thermistors, junction semiconductors, Sensors, Radiation methods, Optical pyrometers, Dynamic response of temperature sensors heat flux Sensors, Transducers for liquid level measurement, humidity, silicon and quartz sensors, fiber optic sensors.	10
Unit – 5	
Smart sensors : Introduction, primary sensors, converters, compensation. Recent trends in sensor technology – film sensors, semiconductor IC technology, MEMS, Nano-sensors	8
Total	48

On completion of the course student will be able to

- Use concepts in common methods for converting a physical parameter into an electrical quantity
- Classify and explain with examples of transducers, including those for measurement of temperature, strain, motion, position and light
- Choose proper sensor comparing different standards and guidelines to make sensitive measurements of physical parameters like pressure, flow, acceleration, etc
- Predict correctly the expected performance of various sensors knowledge outside the classroom through design of a real-life instrumentation system
- 5. Locate different type of sensors used in real life applications and paraphrase their importance

Text Books:

- 1. Sensors and Transducers Hardcover Import, 5 December 2000by <u>Ian Sinclai</u>, newness publication.
- Sensors and Transducers , Author, Department of Cybernetics, University of Reading, UK , M. J. Usher, 1985, Springer

- Doebelin, E.O., "Measurement systems Application and Design", McGraw Hill.
- 2. D. Patranabis, "Sensors and Transducers", PHI, 2nd Edition.

FUNDAMENTALS OF MICROPROCESSORS AND MICROCONTROLLERS

(Open Elective)

Subject Code	18XXECOX0XE	Internal Marks	30
Number of Lecture Hours/Week	03	External Marks	70
Total Number of Lecture Hours	48	Exam Hours	03

Credits – 03

Course Objectives:

- To Learn the architecture of microprocessor and microcontroller.
- 2. To know the programming of 8086
- 3. To understand the interfacing of the processors
- To know Memory System and I/O Organization and its applications.
- 5. To develop Microcontroller programming for various applications

Unit -1	Hours
8085 PROCESSOR Hardware Architecture, pinouts — Functional Building Blocks of Processor — Memory organization — I/O ports and data transfer concepts, Interrupts. 8086 Architecture: Main features, pin diagram/description, 8086 microprocessor family, internal architecture, interrupts and interrupt response, 8086 system timing, minimum mode and maximum mode configuration.	
Unit -2	
8086 Programming: Program development steps, instructions, addressing modes, assembler directives, writing simple programs with an assembler, assembly language program development tools.	10
Unit -3	

8086 Interfacing: Semiconductor memories interfacing (RAM, ROM), Intel 8255 programmable peripheral interface, Interfacing switches and LEDS, Interfacing seven segment displays, software and hardware interrupt applications, Intel 8251 USART architecture and interfacing, Intel 8237a DMA controller, stepper motor, A/D and D/A converters, Need for 8259 programmable interrupt controllers.	10
Unit – 4	
8051 MICRO CONTROLLER Hardware Architecture, pinouts — Functional Building Blocks of Processor — Memory organization — I/O ports and data transfer concepts—Timing Diagram — Interrupts- Data Transfer, Manipulation, Control Algorithms& I/O instructions, Comparison to Programming concepts with 8085.	10
Unit – 5	
MICRO CONTROLLER PROGRAMMING & APPLICATIONS Simple programming exercises- key board and display interface –Control of servo motor stepper motor control- Application to automation systems.	8
Total	48

On completion of the course student will be able to

- 1. Understand the architecture of microprocessor and their operation.
- Demonstrate programming skills in assembly language for processors and controllers.
- 3. Analyze various interfacing techniques and apply them for the design of processor/Controller based systems.
- 4. Understand 8051 architecture.
- 5. Analyze Microcontroller programming & applications

Text Books:

- 1. R.S. Gaonkar, Microprocessor Architecture Programming and Application, with 8085, Wiley Eastern Ltd., New Delhi, 2013.
- 2. A.K Ray, K.M. Bhurchandhi," Advanced Microprocessor and Peripherals", Tata McGraw Hill Publications, 2000.
- 3. The 8051 Microcontrollers and Embedded systems Using Assembly and C, Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D.McKinlay; Pearson 2-Edition, 2011

1. Douglas V Hall, SSSP Rao, Microprocessors and Interfacing – Programming and Hardware, Tata Mc Graw Hill Education Private Limited,3rdEdition,1994

FUNDAMENTALS OF INTERNET OF THINGS (Open Elective)			
Subject Code	18XXECOX0XF	Internal Marks	30
Number of Lecture Hours/Week	03	External Marks	70
Total Number of Lecture Hours	48	Exam Hours	03

Credits - 03

Course Objectives:

- 1. To introduce IoT Fundamentals
- 2. To know about the IoT Characteristics.
- 3. To give the understanding of IoT Architecture overview
- 4. To understand the concepts of IoT Reference Architecture.
- 5. To know different case studies of IoT.

Unit -1	Hours
Introduction to IoT: Sensing, Actuation, Networking basics,	
Communication Protocols, Sensor Networks, Machine-to-	
Machine Communications, IoT Definition, Characteristics.	
IoT Functional Blocks, Physical design of IoT, Logical design	10
of IoT, Communication models &APis.	
Unit -2	
M2M to IoT-The Vision-Introduction, From M2M to IoT,	
M2M towards IoT-the global context, A use case example,	10
Differing Characteristics. Definitions, M2M Value Chains, IoT	
Value Chains, An emerging industrial structure for IoT.	
Unit -3	

M2M vs loT An Architectural Overview-Building architecture, Main design principles and needed capabilities, An IoT architecture outline, standards considerations. Reference Architecture and Reference Model of IoT.	10
Unit – 4	
IoT Reference Architecture-Getting Familiar with IoT Architecture, Various architectural views of IoT such as Functional, Information, Operational and Deployment. Constraints affecting design in IoT world-Introduction, Technical design Constraints.	10
Unit – 5	
Developing IoT solutions: Introduction to Python, Introduction to different IoT tools, Introduction to Arduino and Raspberry Pi, Introduction to Cloud Computing, Fog Computing, Connected Vehicles, Data Aggregation for the IoT in Smart Cities, Privacy and Security Issues in IoT. Case Studies: Home Automation, Smart Health care.	8
Total	48

On completion of the course student will be able to

- 1. Understand general concepts of Internet of Things (IoT)
- 2. Understand general concepts of M2M
- 3. Know the design principals of IoT
- 4. Recognize the various architectural view IoT
- 5. Apply the different applications of IoT

Text Books:

- Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A HandsonApproach)", 1st Edition, VPT, 2014
- JanHoller, Vlasios Tsiatsis, Catherine Mulligan,StefanAvesand, Stamatis Karnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of intelligence",1stEdition,AcademicPress,2014.

- Francisda Costa, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, A press Publications. 2013
- 2. CunoPfister, Getting Started with the Internet of Things,

O"ReillyMedia, 2011,ISBN:978-1-4493-9357-1

ELINID A MIENITA I C.	DE DICITAL CICNAL DD	OCECCI	INIC	
FUNDAMENTALS (OF DIGITAL SIGNAL PRO (Open Elective)	OCESSI	ING	
Subject Code		Intern	al	30
Subject Code	18XXECOX0XG	Mark		30
Number of Lecture	03	Extern		70
Hours/Week		Mark	S	
Total Number of Lecture	48	Exan	-	03
Hours		Hour		0.2
~ ~ ~ ~ ~ ~		Cre	dits -	- 03
Course Objectives:	14- 4-			
This course will enable stud 1. Know digital signal				
	given Discrete Time Sequen	COS		
	for solving the DFT of a sec			
	s for the given specifications			
	on Digital Signal Processors			
Unit -1	on Digital Digital 1 1000055015		Hou	ırs
Introduction: Introduction	n to Digital Signal Proc	essing:		
	quences, Classification of D			
	LTI systems, Response of			
	its. Solution of Linear co		1	0
coefficient difference	equations. Frequency			
representation of discrete ti	me signals and systems.			
Unit -2				
	ms: Introduction, Discrete I		1	0
	gnals, Properties of DFT,	Linear	1	U
filtering methods based on l	DFT.			
Unit -3				
	s (FFT): Introduction, R			
	Algorithm (DIT-FFT), R			_
	FT Algorithm (DIF-FFT), 1	Inverse	1	0
FFT.				
Unit – 4				
Design of IIR Digital Filte	ers: Analog filter approxima	tions –		

10

Butter worth and Chebyshev, Design of IIR Digital filters from

analog filters, Design Examples, Analog and Digital frequency

transformations.

Design of FIR Digital Filters: Characteristics of FIR Digital	
Filters, frequency response. Design of FIR Digital Filters using	
Window Techniques, Comparison of IIR & FIR filters	
Unit – 5	
DSP Processors: Introduction to programmable DSPs:	
Multiplier and Multiplier Accumulator, Modified bus	8
structures and memory access schemes in P-DSPs, Multiple	
Access Memory, Multi-ported memory, VLIW architecture,	
Pipelining, Special addressing modes, On-Chip Peripherals.	
Total	48

Course outcomes:

On completion of the course student will be able to

- 1. Interpret digital signal processing concepts and solve difference equations for analyzing Discrete Time Systems
- 2. Apply DFT for Discrete Time Sequences
- 3. Construct FFT algorithm for solving the DFT of a sequence
- 4. Construct Digital filters for the given specifications
- 5. Apply the signal processing concepts on Digital Signal Processors.

Text Books:

- John G. Proakis, Dimitris G.Manolakis, "Digital Signal Processing, Principles, Algorithms, and Applications", Pearson Education / PHI, 2007.
- A Anand Kumar, "Digital Signal Processing", 2nd Edition, PHI Publications
- B.Venkataramani, M.Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", TATA McGraw Hill, 2002

- Andreas Antoniou, "Digital Signal Processing", TATA McGraw Hill, 2006
- Robert J. Schilling, Sandra L. Harris, "Fundamentals of Digital Signal Processing using Matlab", Thomson, 2007.

SIGNALS AND SYSTEMS (Open Elective)			
Subject Code	18XXECOX0XH	Internal Marks	30
Number of Lecture Hours/Week	03	External Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
		Credits	- 03

- Learn various signals, systems both in continuous time and discrete time.
- 2. Know the Fourier analysis of continuous-time periodic signals and finite energy signals.
- 3. Perform signal conversion by applying sampling theorem.
- Make use of applying various signal and system properties to LTI systems
- 5. Extend the transform analysis to discrete time sequences

Unit -1	Hours
Introduction to Signals and Systems: Definition of Signals and Systems, Singularity functions and related functions. Complex exponential and sinusoidal signals. Classification of Signals, Operations on signals. Classification of Systems.	
Unit -2	
Fourier Series: Fourier series representation of continuous time periodic signals, Dirichlet's conditions, Trigonometric Fourier series and Exponential Fourier series. Fourier Transform: Fourier transform of arbitrary signal, Fourier transform of standard signals, properties of Fourier transforms.	
Unit -3	
Sampling Theorem: Representation of a CT signal by its samples: The Sampling theorem, impulse sampling, Natural and Flat-top Sampling, Reconstruction of signal from its samples, effect of under sampling—Aliasing. Review of Laplace Transforms, Properties, Inverse Laplace Transform, Relation between L.T and F.T of a signal.	10

Total	48
Z-Transforms: Concept of Z- Transform of a discrete sequence. Distinction between Laplace, Fourier and Z transforms. Region of convergence, constraints on ROC for various classes of signals, Properties of Z-transforms, Inverse Z-transform. Applications of signals and Systems: Modulation for communication, Filtering of signals and Feedback control systems.	10
Analysis of Linear Systems: Linear Time Invariant systems, impulse response, Response of a linear system, Transfer function of a LTI system, Concept of convolution and graphical representation of convolution. Cross-correlation and autocorrelation of signals, Relation between convolution and correlation. Unit – 5	10
Unit – 4	

Course outcomes:

On completion of the course student will be able to

- Understand various signals and systems and demonstrate their properties.
- 2. Develop Fourier analysis of continuous-time periodic signals and continuous-time finite energy signals.
- 3. Apply sampling theorem for signal conversion from continuoustime signals to discrete-time.
- 4. Illustrate various operations on LTI systems.
- 5. Apply z-transform to analyze discrete-time signals.

Text Books:

- A.V. Oppenheim, A.S. Willsky and S.H. Nawab, "Signals and Systems", 2nd Edition, PHI, 2009.
- 2. A Anand Kumar, "Signals and Systems", PHI Publications.

Reference Books:

 B.P. Lathi, "Signal Processing & Linear Systems", 1st Edition, Oxford University Press, 2006 Simon Haykin and Van Veen, "Signals & Systems", 2nd Edition, John Wiley India, 2011. Open Elective Courses Offered by ECT to other Departments

Open Elective Courses offered by ECT Department

S.No	Subject Code	Name of the subject	L	Т	P	Cr
1	18XXETOXXXX	Signals and Systems	3	0	0	3
2	18XXETOXXXX	Principles of Signal Processing	3	0	0	3
3	18XXETOXXXX	Consumer Electronics	3	0	0	3
4	18XXETOXXXX	Transducers and Sensors	3	0	0	3
5	18XXETOXXXX	IOT and Applications	3	0	0	3
6	18XXETOXXXX	IC Applications	3	0	0	3
7	18XXETOXXXX	Principles of Communications	3	0	0	3
8	18XXETOXXXX	Data Communications	3	0	0	3
9	18XXETOXXXX	Digital Logic design	3	0	0	3
10	18XXETOXXXX	Remote Sensing and GIS	3	0	0	3

SIGNALS AND SYSTEMS (Open Elective)			
Subject Code	18XXETOXXXX	Internal Marks	30
Number of Lecture	03	External	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam	03
Hours		Hours	
Pre-requisite	Engineering	Credits – 03	
_	Mathematics		

This course will enable students to

- 1. Understand signals and systems classification
- 2. Explain convolution and representations of Systems
- 3. Understand frequency domain representation of systems

4. Explain the applications of Fourier representation

Unit -1	Hours
Introduction: Definitions of a signal and a system, classification of signals, basic Operations on signals, elementary signals, Systems viewed as Interconnections of operations, properties of systems.	10
Unit -2	
Time-domain representations for LTI systems: Convolution, impulse response representation, Convolution Sum and Convolution Integral. Properties of impulse response representation, Differential and difference equation Representations, Block diagram representations.	10
Unit -3	
Frequency-domain representation for signals: Introduction, Discrete-time and continuous time Fourier series (derivation of series excluded) and their properties. Discrete-time and continuous-time Fourier transforms (derivations of transforms are excluded) and their properties.	10
Unit – 4	
Applications of Fourier representations: Introduction, Frequency response of LTI systems, Fourier transform representation of periodic signals, Fourier transform representation of discrete time signals.	9
Unit – 5	

LAPLACE & Z-TRANSFORMS: Introduction, Concept of	
region of convergence (ROC) for Laplace transforms,	
constraints on ROC for various classes of signals, Properties of	
L.T's, Inverse Laplace transform, Relation between L.T's, and	Q
F.T. of a signal. Z-Transforms: Introduction, Z-transform,	9
properties of ROC, properties of Z – transforms, inversion Z-	
transforms. Z-Transform analysis of LTI Systems, unilateral Z-	
Transform and its application to solve difference equations.	

Course outcomes: Students will be able to

- 1. Understand signal and its basic operations
- 2. Understand linear time invariant systems.
- 3. Apply the concepts of Fourier series representations to analyze continuous and discrete time periodic signals.
- Understand and apply the continuous time Fourier transform, discrete time Fourier transform,
- Apply the concepts of Laplace transform, and z-Transform to the analysis and description of LTI continuous and discrete-time systems.

Text Books:

- A.V. Oppenheim, A.S. Willsky and S.H. Nawab, "Signals and Systems", Pearson, 2 nd Edn.G. Streetman and S. K. Banerjee, "Solid State Electronic Devices", 2ndedition, Pearson, 2014.
- B. P. Lathi, "Linear Systems and Signals", Second Edition, Oxford University Press
- Simon Haykin and Van Veen, "Signals & Systems", Wiley, 2nd Edition.

- Michel J. Robert, "Fundamentals of Signals and Systems", MGH International Edition, 2008.
- 2. Ramakrishna Rao, "Signals and Systems", 2008, TMH

PRINCIPLES OF SIGNAL PROCESSING (Open Elective)			
Subject Code	18XXETOXXXX	Internal Marks	30
Number of Lecture	03	External	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam	03
Hours		Hours	
Pre-requisite	Signals and Systems	Credits – 03	
Course Objectives:			

- 1. Understand discrete signals and systems, DIT algorithms
- 2. Explain the structures of IIR filters by bilinear transformation
- 3. Explain the structures of FIR filters by window techniques
- 4. Explain the concept of multirate signal processing and adaptive filters

Unit -1	Hours
Discrete Signals and Systems- A Review – Introduction to	
DFT – Properties of DFT – Circular Convolution – Filtering	10
methods based on DFT – FFT Algorithms –Decimation in time	
Algorithms, Decimation in frequency Algorithms – Use of FFT	
in Linear Filtering.	
Unit -2	
Structures of IIR filters – Analog filter design – Discrete time	10
IIR filter from analog filter – IIR filter design by Impulse	10
Invariance, Bilinear transformation.	
Unit -3	
Structures of FIR filters – Linear phase FIR filter – Filter	
design.	
Design using windowing techniques (Rectangular Window,	9
Hamming Window, Hanning Window), Frequency sampling	
techniques.	
Unit – 4	
Multirate signal processing: Basic building blocks of	
multirate DSP, Decimation, Interpolation, Sampling rate	10
conversion by a rational factor, Multistage Sampling Rate	
Converters.	
Unit – 5	
Adaptive Filters: Introduction, LMS and RLS Adaptation	
Algorithms, Applications of adaptive filtering to equalization,	9
noise cancellation.	

Course Outcomes:

The student will be able to

- 1. Use the FFT algorithm for solving the DFT of a given signal
- 2. Design a Digital filter (FIR&IIR) from the given specifications
- 3. Realize the FIR and IIR structures from the designed digital filter.
- 4. Use the Multirate Processing concepts in various applications.
- Apply the Adaptive signal processing concepts to various signal processing applications

Text Books:

- Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris G.Manolakis, Pearson Education / PHI, 2007.
- Discrete Time Signal Processing A.V.Oppenheim and R.W. Schaffer, PH

- Fundamentals of Digital Signal Processing using Matlab Robert J. Schilling, Sandra L. Harris, Thomson, 2007.
- Understanding Digital Signal Processing 2nd Edition by Richard G.Lyons

CONSUMER ELECTRONICS (Open Elective)			
Subject Code	18XXETOXXXX	Internal Marks	30
Number of Lecture	03	External	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam	03
Hours		Hours	
Pre-requisite	Analog	Credits – 03	
_	Communications		

- 1. Understand the significance of audio systems
- 2. Explain the digital audio fundamentals and operation
- 3. Explain the operation of digital transmission and reception
- 4. Understand the need for different type of appliances

Unit -1	Hours
Audio Systems: Microphones and Loudspeakers: Carbon,	
moving coil, cordless microphone, Direct radiating and horn	10
loudspeaker, Multi-speaker system, Hi-Fi stereo and dolby	
system. Concept to fidelity, Noise and different types of	
distortion in audio system.	
Unit -2	
Digital Audio Fundamentals: Audio as Data and Signal,	10
Digital Audio Processes Outlined, Time Compression and	10
Expansion.	
Unit -3	
SCR and Thyristor: Principles of operation and	
characteristics of SCR, Triggering of Television: Basics of	
Television: Elements of TV communication system, Scanning	
and its need, Need of synchronizing and blanking pulses, VSB,	9
Composite Video Signal.	
Colour Television: Primary, secondary colours, Concept of	
Mixing, Colour Triangle, Camera tube, PAL TV Receiver,	
NTSC, PAL, SECAM.	
Unit – 4	
Digital Transmission and Reception: Digital satellite	
television, Direct-To-Home(DTH) satellite television,	10
Introduction to :Video on demand, CCTV, High	
Definition(HD)-TV. Introduction to Liquid Crystal and LED	

Screen Televisions Basic block diagram of LCD and LED	
Television and their comparison.	
Unit - 5	
Introduction to different type of domestic/commercial	
appliances: Operation of Micro-wave oven, Food Processors,	9
Digital Electronic Lock, Vacuum cleaner, Xerox Machine,	7
scanner.	

Course Outcomes:

Student will be able to

- 1. Understand the various type of microphones and loud speakers.
- 2. To identify the various digital and analog signal.
- 3. Describe the basis of television and composite video signal.
- 4. Describe the various kind of colour TV standards and system.
- 5. Compare the various types of digital TV system.
- 6. Understand the various type of consumer goods.

Text Books:

- Modern Television Practice by R. R. Gulai; New Age International Publishers.
- Audio Video Systems by R. G. Gupta; McGraw Hill Education System.
- 3. Audio Video Systems Principles Practices and Troubleshooting by Bali & Bali; Khanna Publishing Company

Reference Books:

1. Consumer Electronics by S. P. Bali; Pearson Education, New Delhi

TRANSDUCERS AND SENSORS (Open Elective)			
Subject Code	18XXETOXXXX	Internal Marks	30
Number of Lecture Hours/Week	03	External Marks	70
Total Number of Lecture Hours	48	Exam Hours	03
Pre-requisite	EMI	Credits – 03	

- Understand measurements and instrumentation and its need.
- Explain the Characteristics of Transducers.
- Explain the Characteristics of resistive, inductive and capacitive transducers

Unit -1	Hours
Measurements and Instrumentation of Transducers:	
Measurements – Basic method of measurement – Generalized	
scheme for measurement systems – Units and standards –	
Errors – Classification of errors, error analysis – Statistical	10
methods – Sensor – Transducer – Classification of transducers	
 Basic requirement of transducers. 	
Unit -2	
Characteristics of Transducers: Static characteristics –	
Dynamic characteristics – Mathematical model of transducer –	10
Zero, first order and second order transducers – Response to	
impulse, step, ramp and sinusoidal inputs	
Unit -3	
Resistive Transducers: Potentiometer –Loading effect –	
Strain gauge – Theory, types, temperature compensation –	
Applications	9
Torque measurement – Proving Ring – Load Cell –	9
Resistance thermometer – Thermistors materials –	
Constructions, Characteristics – Hot wire anemometer	
Unit – 4	
Inductive and Capacitive Transducer: Self inductive	
transducer – Mutual inductive transducers – Linear Variable	
Differential Transformer – LVDT Accelerometer – RVDT –	10
Synchros – Microsyn – Capacitive transducer – Variable Area	
Type – Variable Air Gap type – Variable Permittivity type –	
Capacitor microphone.	

Unit – 5	
Miscellaneous Transducers: Piezoelectric transducer – Hall	
Effect transducers – Smart sensors – Fiber optic sensors – Film	09
sensors – MEMS – Nano sensors, Digital transducers	

Course Outcomes:

At the end of the course, a student will be able to:

- 1. Use concepts in common methods for converting a physical parameter into an electrical quantity
- Classify and explain with examples of transducers, including those for measurement of temperature, strain, motion, position and light
- 3. Choose proper sensor comparing different standards and guidelines to make sensitive measurements of physical parameters like pressure, flow, acceleration, etc
- 4. Predict correctly the expected performance of various sensors
- 5. Locate different type of sensors used in real life applications and paraphrase their importance
- 6. Set up testing strategies to evaluate performance characteristics of different types of sensors and transducers
- 7. develop professional skills in acquiring and applying the knowledge outside the classroom through design of a real-life instrumentation system

Text Books:

- Sawhney. A.K, "A Course in Electrical and Electronics Measurements and Instrumentation", 18th Edition, Dhanpat Rai & Company Private Limited, 2007.
- Patranabis. D, "Sensors and Transducers", Prentice Hall of India, 2003.

- Renganathan. S, "Transducer Engineering", Allied Publishers, Chennai, 2003.
- Doebelin. E.A, "Measurement Systems Applications and Design", Tata McGraw Hill, New York, 2000
- John. P, Bentley, "Principles of Measurement Systems", III Edition, Pearson Education, 2000.
- Murthy. D. V. S, "Transducers and Instrumentation", Prentice Hall of India, 2001. 4. Sensor Technology Hand Book – Jon Wilson, Newne 2004.
- Instrument Transducers An Introduction to their Performance and design – by Herman K. P. Neubrat, Oxford University Press

IOT AND APPLICATIONS (Open Elective) Subject Code Internal Marks 18XXETOXXXX 30 Number of Lecture External 70 03 Hours/Week Marks Total Number of 48 Exam Hours 03 Lecture Hours Pre-requisite Credits - 03

Course Objectives:

- 1. Understand the IoT and its role in cloud computing.
- 2. Understand the elements and application development using IoT.
- 3. Explain the solution framework for IoT applications
- 4. Analyze the IoT Case Studies.

4. Aliaryze the for Case Studies.	
Unit -1	Hours
Introduction to IoT: Introduction to IoT, Architectural	
Overview, Design principles and needed capabilities, Basics of	
Networking, M2M and IoT Technology Fundamentals-	
Devices and gateways, Data management, Business processes	10
in IoT, Everything as a Service (XaaS), Role of Cloud in IoT,	
Security aspects in IoT.	
Unit -2	
Elements of IoT: Hardware Components- Computing-	
Arduino, Raspberry Pi, ARM Cortex-A class processor,	10
Embedded Devices – ARM Cortex-M class processor, Arm	10
Cortex-M0 Processor Architecture, Block Diagram, Cortex-M0	
Processor Instruction Set, ARM and Thumb Instruction Set.	
Unit -3	
IoT Application Development: Communication, IoT	
Applications, Sensing, Actuation, I/O interfaces. Software	
Components- Programming API's (using	
Python/Node.js/Arduino) for Communication Protocols-	
MQTT, ZigBee, CoAP, UDP, TCP, Bluetooth.	9
Bluetooth Smart Connectivity Bluetooth overview, Bluetooth	
Key Versions, Bluetooth Low Energy (BLE) Protocol,	
Bluetooth, Low Energy Architecture, PSoC4 BLE architecture	
and Component Overview.	
Unit – 4	
Solution framework for IoT applications: Implementation of	10
Device integration, Data acquisition and integration, Device	

data storage- Unstructured data storage on cloud/local server,	
Authentication, authorization of devices.	
Unit – 5	
IoT Case Studies: IoT case studies and mini projects based on Industrial automation, Transportation, Agriculture, Healthcare, Home Automation. Cloud Analytics for IoT Application: Introduction to cloud computing, Difference between Cloud Computing and Fog Computing: The Next Evolution of Cloud Computing, Role of Cloud Computing in IoT, Connecting IoT to cloud, Cloud Storage for IoT Challenge in integration of IoT with Cloud.	9

Course Outcomes:

The student will be able to:

- Understand internet of Things and its hardware and software components.
- 2. Interface I/O devices, sensors & communication modules.
- 3. Remotely monitor data and control devices.
- 4. Design real time IoT based applications.
- 5. Design the real case studies.

Text Books:

- 1. Raj Kamal, "Internet of Things: Architecture and Design Principles", 1st Edition, McGraw Hill Education, 2017.
- 2. The Definitive Guide to the ARM Cortex-M0 by JosephYiu,2011
- 3. Vijay Madisetti, Arshdeep Bahga, Internet of Things, "A Hands on Approach", UniversityPress,2015

- CypressSemiconductor/PSoC4BLE(BluetoothLowEnergy)ProductTrainingModules.
- 2. PethuruRajandAnupamaC.Raman, "TheInternetofThings:EnablingTechnologies,Platforms,andUse Cases", CRCPress, 2017.

IC APPLICATIONS (Open Elective)			
Subject Code	18XXETOXXXX	Internal Marks	30
Number of Lecture	03	External	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam	03
Hours		Hours	
Pre-requisite	Analog Circuits, DSD	Credits – ()3

- 1. Understand the ideal op-amp and practical op-amp.
- 2. Understand 555 timer and IC565 VCO and its application.
- 3. Explain the DAC and ADC techniques and its specifications.
 4. Explain the Use of TTL-74XX Series & CMOS 40XX Series ICs

4. Explain the Use of TTL-74XX Series & CWOS 40XX Series in	.Cs
Unit -1	Hours
Ideal and Practical Op-Amp, Op-amp characteristics-DC and	
AC Characteristics, General Linear Applications of Op-Amp:	
Adder, Subtractor, Differentiators and Integrators, Active	
Filters and Oscillators, Nonlinear Applications of OPAMP:	10
Comparators, Schmitt Trigger, Multivibrators	
Unit -2	
Introduction to 555 Timer , Functional Diagram, Monostable	
and Astable Operations and Applications, Schmitt Trigger,	10
PLL- Introduction, Block Schematic, Principles and Description	
of individual Blocks of 565, VCO.	
Unit -3	
Introduction, Basic DAC Techniques - Weighted Resistor	
Type. R-2R Ladder Type, inverted R-2R Type.	
Different types of ADCs - Parallel Comparator Type. Counter	9
Type. Successive Approximation Register Type and Dual Slope	
Type DAC and ADC Specifications.	
Unit – 4	
Use of TTL-74XX Series & CMOS 40XX Series ICs, TTL	
ICs - Code Converters, Decoders, Demultiplexer, Encoders,	
Priority Encoders, multiplexers & their applications. Priority	10
Generators, Arithmetic Circuit ICs-Parallel Binary	10
Adder/Subtractor Using 2's Complement System, Magnitude	
Comparator Circuits.	
Comparator Circuits.	

Unit – 5		
Commo	only Available 74XX & CMOS 40XX Series ICs - RS,	
JK. JK	Master-Slave. D and T Type Flip-Flops & their	09
Convers	ions, Synchronous and asynchronous counters. Decade	09
counters	s. Shift Registers & applications	
Course	Outcomes:	
The stud	lent will be able to	
1.	Analyze the Differential Amplifier with Discrete	
	components	
2.	Describe the Op-Amp and internal Circuitry: 555	
	Timer, PLL	
3.	Discuss the Applications of Operational amplifier:	
	555 Timer, PLL	
4.	Design the digital application using digital ICs	
5.	Use the Op-Amp in A to D & D to A Converters	

Text Books:

- 1. Linear Integrated Circuits -D. Roy Chowdhury, New Age International (p)Ltd, 3" Ed., 2008.
- Digital Fundamentals Floyd and Jain, Pearson Education,8th Edition, 2005.

- 1. Modern Digital Electronics RP Jain 4/e TMH, 2010.
- 2. Op-Amps & Linear ICs Ramakanth A. Gayakwad, PHI, 1987

PRINCIPLES OF COMMUNICATION SYSTEMS (Open Elective)			
Subject Code	18XXETOXXXX	Internal	30
	IOAAEIOAAAA	Marks	
Number of Lecture	03	External	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam	03
Hours		Hours	
Pre-requisite	Signals and Systems	Credits -	03

- 1. Understand modulation techniques in time and frequency domain
- 2. Explain angle modulation and signal sampling.
- 3. Analyze noise in analog modulation systems
- 4. Understand Transmission of Binary Data in Communication Systems

Unit -1	Hours
Amplitude modulation: Introduction, Amplitude Modulation:	
Time & Frequency – Domain description, switching modulator,	
Envelop detector. Double side band-suppressed carrier	
modulation: Time and Frequency – Domain description, Ring	10
modulator, Coherent detection, Costas Receiver, Quadrature	
Carrier Multiplexing. Single side-band and vestigial sideband	
methods of modulation: SSB Modulation, VSB Modulation,	
Frequency Translation, Frequency- Division Multiplexing,	
Theme Example: VSB Transmission of Analog and Digital	
Television	
Unit -2	
Angle modulation: Basic definitions, Frequency Modulation:	
Narrow Band FM, Wide Band FM, Transmission bandwidth of	9
FM Signals, Generation of FM Signals, Demodulation of FM	
Signals, FM Stereo Multiplexing,	
Unit -3	
Signal Sampling and Analog Pulse Communication: Ideal	
Sampling, Pulse Amplitude Modulation, Pulse Width	
Modulation, Pulse Position Modulation. Digital	9
Communication Techniques: Quantization, Digital	,
Transmission of Data, Parallel and Serial Transmission, Data	
Conversion, Pulse Code Modulation, Delta Modulation.	
Unit – 4	
Noise in analog modulation: Introduction, Receiver Model,	10
Noise in DSB-SC receivers, Noise in AM receivers, Threshold	10
effect, Noise in FM receivers, Capture effect, FM threshold	

effect, FM threshold reduction, Pre-emphasis and De-emphasis in FM.	
Unit – 5	
Transmission of Binary Data in Communication Systems: Digital Codes, Principles of Digital Transmission, Transmission Efficiency, Modem Concepts and Methods – FSK, BPSK, Error Detection and Correction	10

Course Outcomes:

The student will be able to

- Analyze the performance of analog modulation schemes in time and frequency domains.
- 2. Analyze the performance of angle modulated signals.
- 3. Characterize analog signals in time domain as random processes and noise
- 4. Characterize the influence of channel on analog modulated signals
- 5. Determine the performance of analog communication systems in terms of SNR
- 6. Analyze pulse amplitude modulation, pulse position modulation, pulse code modulation and TDM systems

Text Books:

- Principles of Communication Systems H Taub& D. Schilling, GautamSahe, TMH, 2007, 3rdEdition.
- 2. Communication Systems B.P. Lathi, BS Publication, 2006.

- Principles of Communication Systems Simon Haykin, John Wiley,2ndEdition.
- Electronics & Communication System George Kennedy and Bernard Davis, TMH 2004.
- Communication Systems
 – R.P. Singh, SP Sapre, Second Edition TMH,2007.

DATA COMMUNICATIONS (Open Elective)			
Subject Code	18XXETOXXXX	Internal	30
	IBAAETOAAAA	Marks	
Number of Lecture	03	External	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam	03
Hours		Hours	
Pre-requisite	Communication	Credits – 03	

- Understand the concept of data communications and network connection.
- 2. Explain the operation of data link layer and network layer.
- 3. Understand the operation of transport layer and IP.
- 4. Explain the application layer and Principles of Networking Applications.

Unit -1	Hours
Introduction to Data Communications: Components, Data	
Representation, Data Flow, Networks Distributed Processing,	
Network Criteria, Physical Structures, Network Models,	
Categories of Networks Interconnection of Networks, The	10
Internet - A Brief History, The Internet Today, Protocol and	
Standards - Protocols, Standards, Standards Organizations,	
Internet Standards. Network Models, Layered Tasks, OSI	
model, Layers in OSI model, TCP/IP Protocol Suite, Addressing	
Introduction, Wireless Links and Network Characteristics,	
WiFi: 802.11 Wireless LANs -The 802.11 Architecture,	
Unit -2	
Data Link Layer: Links, Access Networks, and LANs-	
Introduction to the Link Layer, The Services Provided by the	
Link Layer, Types of errors, Redundancy, Detection vs	
Correction, Forward error correction Versus Retransmission	
Error-Detection and Correction Techniques, Parity Checks,	10
Check summing Methods, Cyclic Redundancy Check (CRC),	10
Framing, Flow Control and Error Control protocols, Noisy less	
Channels and Noisy Channels, HDLC, Multiple Access	
Protocols, Random Access ,ALOHA, Controlled access,	
Channelization Protocols. 802.11 MAC Protocol, IEEE 802.11	
Frame.	
Unit -3	

The Network Layer: Introduction, Forwarding and Routing, Network Service Models, Virtual Circuit and Datagram Networks-Virtual-Circuit Networks, Datagram Networks, Origins of VC and Datagram Networks, Inside a Router-Input Processing, Switching, Output Processing, Queuing, The Routing Control Plane. The Internet Protocol(IP): Forwarding and Addressing in the Internet Datagram format, Ipv4 Addressing, Internet Control Message Protocol(ICMP), IPv6	9
Unit – 4	1
Transport Layer: Introduction and Transport Layer Services: Relationship Between Transport and Network Layers, Overview of the Transport Layer in the Internet, Multiplexing and Demultiplexing, Connectionless Transport: UDP -UDP Segment Structure, UDP Checksum, Principles of Reliable Data Transfer-Building a Reliable Data Transfer Protocol, Pipelined Reliable Data Transfer Protocols, Go-Back-N(GBN), Selective Repeat(SR), Connection Oriented Transport: TCP - The TCP Connection, TCP Segment Structure, Round-Trip Time Estimation and Timeout, Reliable Data Transfer, Flow Control, TCP Connection Management, Principles of Congestion Control - The Cause and the Costs of Congestion, Approaches to Congestion Control	10
Unit – 5	
Application Layer: Principles of Networking Applications – Network Application Architectures, Processes Communicating, Transport Services Available to Applications, Transport Services Provided by the File Transfer: FTP,- FTP Commands and Replies, Electronic Mail in the Internet- STMP, Comparison with HTTP, DNS-The Internet's Directory Service – Service Provided by DNS, Overview of How DNS Works, DNS Records and messages.	9
Course Outcomes: 1. Know the Categories and functions of various Communication Networks 2. Design and analyze various error detection techniques	

- 2. Design and analyze various error detection techniques.
- 3. Demonstrate the mechanism of routing the data in network layer
- Know the significance of various Flow control and Congestion control Mechanisms

Text Books:

Computer Networking A Top-Down Approach – Kurose James F, Keith W, 6thEdition, Pearson, 2017.

2. Data Communications and Networking Behrouz A.Forouzan4th Edition McGraw Hill Education,2017.

- 1. Data communication and Networks Bhusan Trivedi, Oxford university press, 2016
- 2. Computer Networks -- Andrew S Tanenbaum, 4th Edition, Pearson Education, 2003.
- 3. Understanding Communications and Networks, 3 rd Edition, W.A.Shay, Cengage Learning, 2003.

DIGITAL LOGIC DESIGN (Open Elective)			
Subject Code	18XXETOXXXX	Internal Marks	30
Number of Lecture	03	External	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam	03
Hours		Hours	
Pre-requisite		Credits – 0	03

- 1. Understand the number system and codes.
- 2. Explain the minimization techniques with four variables and single function.
- 3. Understand the logic circuits design using MSI and LSI
- 4. Explain the operation of sequential and combinational circuit design.

1. Explain the operation of sequential and combinational enear	acsigii.
Unit -1	Hours
REVIEW OF NUMBER SYSTEMS & CODES:	
Representation of numbers of different radix, conversation	
from one radix to another radix, r-1's compliments and r's	
compliments of signed members, Gray code ,4 bit codes; BCD,	9
Excess-3, 2421, 84-2-1 code etc. Error detection & correction	
codes: parity checking, even parity, odd parity, Hamming code.	
BOOLEAN THEOREMS AND LOGIC OPERATIONS:	
Boolean theorems, principle of complementation & duality,	
De-Morgan theorems, Logic operations; Basic logic operations	
-NOT, OR, AND, Universal Logic operations, EX-OR, EX-	
NOR operations. Standard SOP and POS Forms, NAND-	
NAND and NOR-NOR realizations, Realization of three level	
logic circuits. Study the pin diagram and obtain truth table for	
the following relevant ICs 7400,7402,7404,7408,7432,7486.	
Unit -2	
MINIMIZATION TECHNIQUES: Minimization and	
realization of switching functions using Boolean theorems, K-	
Map (up to 6 variables)and tabular method(Quine-mccluskey	
method) with only four variables and single function.	10
COMBINATIONAL LOGIC CIRCUITS DESIGN: Design of	
Half adder, full adder, half subtractor, full subtractor,	
applications of full adders; 4-bit adder-subtractor circuit, BCD	
adder circuit, Excess 3 adder circuit and carry look-a-head	1

adder circuit, Design code converts using Karnaugh method	
and draw the complete circuit diagrams.	
Unit -3	
COMBINATIONAL LOGIC CIRCUITS DESIGN USING MSI &LSI: Design of encoder ,decoder, multiplexer and demultiplexers, Implementation of higher order circuits using lower order circuits. Realization of Boolean functions using decoders and multiplexers, Design of Priority encoder, 4-bit digital comparator and seven segment decoder. Study the relevant ICs pin diagrams and their functions 7442,7447,7485,74154. INTRODUCTION OF PLD's: PLDs: PROM, PAL, PLA - Basics structures, realization of Boolean functions, Programming table.	10
Unit – 4	
SEQUENTIAL CIRCUITS I: Classification of sequential circuits (synchronous and asynchronous), operation of NAND & NOR Latches and flip-flops; truth tables and excitation tables of RS flip-flop, JK flip-flop, T flip-flop, D flip-flop with reset and clear terminals. Conversion from one flip-flop to another flip- flop, Design of 5ripple counters, design of synchronous counters, Johnson counter, ring counter. Design of registers - Buffer register, control buffer register, shift register, bidirectional shift register, universal shift, register, Study the following relevant ICs and their relevant functions 7474,7475,7476,7490,7493,74121.	10
Unit – 5	
SEQUENTIAL CIRCUITS II: Finite state machine; state diagrams, state tables, reduction of state tables. Analysis of clocked sequential circuits Mealy to Moore conversion and vice-versa, Realization of sequence generator, Design of Clocked Sequential Circuit to detect the given sequence (with overlapping or without overlapping)	9
Course Outcomes:	
 The student will be able to Classify different number systems and apply to generat codes. Use the concept of Boolean algebra in minimiz switching functions Design different types of combinational logic circuits. 	zation of
Apply knowledge of flip-flops in designing of Registrong counters	sters and

counters

- 5. The operation and design methodology for synchronous sequential circuits and algorithmic state machines
- 6. Produce innovative designs by modifying the traditional design techniques

Text Books:

- Switching and finite automata theory Zvi.KOHAVI, Niraj.K. Jha 3rdEdition, Cambridge UniversityPress,2009
- 2. Digital Design by M.Morris Mano, Michael D Ciletti,4th edition PHIpublication,2008
- Switching theory and logic design by Hill and Peterson, Mc-Graw Hill TMH edition, 2012.

- Fundamentals of Logic Design by Charles H.RothJr,JaicoPublishers,2006
- 2. Digital electronics by R S Sedha.S.Chand&companylimited,2010
- 3. Switching Theory and Logic Design by A.Anand Kumar,PHILearningpvtltd,2016.
- 4. Digital logic applications and design by John M Yarbough, Cengagelearning, 2006.
- 5. TTL74-Seriesdatabook.

REMOTE SENSING AND GIS (Open Elective)			
Subject Code	18XXETOXXXX	Internal Marks	30
Number of Lecture	03	External	70
Hours/Week		Marks	
Total Number of Lecture	48	Exam	03
Hours		Hours	
Pre-requisite		Credits – 0	03

- 1. Understand the concept of photogrammetry and its significance.
- 2. Explain the basic concept of remote sensing and limitations.
- 3. Understand the vector data model and topology rules.
- 4. Explain the raster data model , elements and importance of source map and data editing

Unit -1	Hours
Introduction to Photogrammetry: Principles & types of aerial photograph, geometry of vertical aerial photograph, Scale & Height measurement on single vertical aerial photograph, Height measurement based on relief displacement, Fundamentals of stereoscopy, fiducial points, parallax measurement using fiducial line.	09
Unit -2	
Remote Sensing: Basic concept of remote sensing, Data and Information, Remote sensing data Collection, Remote sensing advantages & Limitations, Remote Sensing process. Electromagnetic Spectrum, Energy interactions with atmosphere and with earth surface features (soil, water, vegetation), Indian Satellites and Sensors characteristics, Resolution, Map and Image and False color composite, introduction to digital data, elements of visual interpretation techniques.	10
Unit -3	
Remote Sensing: Basic concept of remote sensing, Data and Information, Remote sensing data Collection, Remote sensing advantages & Limitations, Remote Sensing process. Electromagnetic Spectrum, Energy interactions with atmosphere and with earth surface features (soil, water, vegetation), Indian Satellites and Sensors characteristics, Resolution, Map and Image and False color composite,	10

introduction to digital data, elements of visual interpretation	
techniques.	
·	
TT to 4	
Unit – 4	
Vector Data Model: Representation of simple features-	
Topology and its importance; coverage and its data structure,	
Shape file; Data models for composite features Object Based	10
Vector Data Model; Classes and their Relationship; The	
geobase data model; Geometric representation of Spatial	
Feature and data structure, Topology rules	
Unit – 5	
Raster Data Model: Elements of the Raster data model, Types	
of Raster Data, Raster Data Structure, Data Conversion,	
Integration of Raster and Vector data. Data Input: Metadata,	00
Conversion of Existing data, creating new data; Remote	09
Sensing data, Field data, Text data, Digitizing, Scanning, on	
screen digitizing, importance of source map, Data Editing	
Course Outcomes	

Course Outcomes:

The student will be able to

- 1. Retrieve the information content of remotely sensed data
- 2. Analyze the energy interactions in the atmosphere and earth surface features
- 3. Interpret the images for preparation of thematic maps
- 4. Apply problem specific remote sensing data for engineering applications
- 5. Analyze spatial and attribute data for solving spatial problems

6. Create GIS and cartographic outputs for presentation

Text Books:

- 1. Remote Sensing and GIS Lillesand and Kiefer, John Willey 2008.
- 2. Remote Sensing and GIS B. Bhatta by Oxford Publishers 2015.
- 3. Introduction to Geographic Information System Kang-Tsung Chang, McGraw-Hill 2015

Reference Books:

1. Concepts & Techniques of GIS by C. P. Lo Albert, K.W. Yonng, Prentice Hall (India) Publications. 2. Principals of Geo physical Information Systems – Peter A Burragh and Rachael A. Mc Donnell, Oxford Publishers 2004.

3. Basics of Remote sensing & GIS by S. Kumar, Laxmi Publications

Open Elective Courses Offered by EEE to other Departments

Open Electives offered by EEE department

S. No	Subject Code	Subject title
1	18XXEEOM0XA	Control system design
2	18XXEEOM0XB	Optimization techniques
3	18XXEEOM0XC	Electrical Energy Conservation And Auditing
4	18XXEEOM0XD	Electrical and Hybrid Vehicles
5	18XXEEOM0XE	Intelligent control & its applications
6	18XXEEOM0XF	Electrical materials
7	18XXEEOM0XG	Industrial Electrical Systems
8	18XXEEOM0XH	Advanced Control Systems

CONTROL SYSTEM DESIGN			
	(Open		
	Elective)		
Subject Code	18XXEEOM0XA	IA Marks	30
Number of Lecture Hours/week	03	Exam Marks	70
Total Number of Lecture	48	Exam Hours	03
Hours			
Credits – 03			

- Explain the concepts of design problem and various design specifications.
- 2. Discuss the design of compensator for both time and frequency domain specifications.
- 3. Explain the design of various controllers.
- 4. Understand the concept on feed-forward control.
- 5. Apply the knowledge of design using statespace
- 6. Understand the methods of solving Non-linear system of equations.

Unit 1: Design Specifications	Hours
Introduction to design problem and philosophy. Introduction to time domain and frequency domain design specification and its physical relevance. Effect of gain on transient and steady state response. Effect of addition of pole on system performance. Effect of addition of zero on system response.	10
Unit 2: Design of Classical Control System in the time domain and Frequency domain Introduction to compensator. Design of Feedback and Feed forward compensators, Feedback compensation. Realization of compensators.	10
Compensator design in frequency domain to improve steady state and transient response. Feedback and Feed forward compensator design using Bode diagram.	
Unit 3: Design of PID controllers	

Design of P, PI, PD and PID controllers in time domain and frequency domain for first, second and third order systems.	09
Control loop with auxiliary feedback – Feed forward control.	
Unit 4: Control System Design in state space	
Review of state space representation. Concept of controllability & observability, effect of pole zero cancellation on the controllability & observability of the system, pole placement design through state feedback. Ackerman's Formula for feedback gain design. Design of Observer. Full order, Reduced order observer. Separation Principle.	10
Unit 5: Design of control for Non Linear Systems	
Introduction, Methods of solving Non-linear systems of equations. Pseudo- composition, weight function procedure, Technique for extending scalar methods to the multidimensional case in a nontrivial way	09

Course outcomes:

On completion of the course student will be able to:

- 1. Elaborate the concepts of various designing fundamentals.
- 2. Apply the basic design in both time and frequency domain
- 3. Understand the concepts of PID controllers
- 4. Apply the knowledge of design using state space
- Illustrate the basic concepts of nonlinearities and their performance
- 6. Discuss the concepts of singular points and performance of system

Text Books:

- 1. N.Nise, "ControlsystemEngineering", JohnWiley, 2000.
- I.J.NagrathandM.Gopal, "Controlsystemengineering", Wiley, 20 00.
- 3. M.Gopal, "DigitalControlEngineering", WileyEastern, 1988.
- 4. K.Ogata, "ModernControlEngineering", PrenticeHall, 2010.

- 1. B. C. Kuo, "Automatic Control system", PrenticeHall,1995.
- J. J. D'Azzo and C. H. Houpis, "Linear control system analysis anddesign (conventional and modern)", McGrawHill,1995.
- 3. R. T. Stefani and G. H. Hostettler, "Design of feedback Control Systems", Saunders CollegePub,1994.

OPTIMIZATION TECHNIQUES Open Elective				
18XXEEOM0XB	IA Marks	30		
03	Exam Marks	70		
48	Exam Hours	03		
	Dpen Elective 18XXEEOM0XB 03	Den Elective 18XXEEOM0XB IA Marks 03 Exam Marks		

Credits -3

Course Objectives:

This course will enable student to:

- Explain the objective and constraint functions in terms of design variables, and then state the optimization problem.
- 2. Solve single variable and multi variable optimization problems with and without constraints.
- Explain linear programming technique to an optimization problem, slack and surplus variables, by using Simplex method.
- 4. Explain nonlinear programming techniques, unconstrained or constrained, and define exterior and interior penalty functions for optimization problems.

5. Discuss evolutionary programming techniques.

er Biseuss evolutionally programming techniques:	
Unit 1: Introduction	Hour
	S
Statement of an Optimization problem, design vector, design constraints, constraint surface, objective function, objective	09
function surfaces, classification of Optimization problems.	
Unit 2: Classical Optimization Techniques	
Single variable Optimization, multi variable Optimization without constraints, necessary and sufficient conditions for minimum/maximum, multivariable Optimization with equality constraints. Solution by method of Lagrange multipliers,	10
multivariableOptimizationwithinequalityconstraints,Kuhn,Tucke rconditions.	
Unit 3: Linear Programming	

Standard form of a linear programming problem , geometry of	
linear programming problems, definitions and theorems, solution	09
of a system of linear simultaneous equations, pivotal reduction of	
a general system of equations, motivation to the simplex method,	
simplex algorithm, Duality in Linear Programming, Dual Simplex	
method.	
Unit 4: Nonlinear Programming	

Unconstrained cases, One, dimensional minimization methods: Classification, Fibonacci method and Quadratic interpolation method, Univariate method, Powell's method and steepest descent method.	10
Constrained cases, Characteristics of a constrained problem,	
Classification, Basic approach of Penalty Function method;	
Basic approaches of Interior and Exterior penalty function	
methods. Introduction to convex Programming Problem.	
Unit 5: Introduction to Evolutionary Methods	
Evolutionary programming methods, Introduction to Genetic Algorithms (GA)— Control parameters, Number of generation, population size, selection, reproduction, crossover and mutation, Operator selection criteria, Simple mapping of objective function to fitness function, constraints. Genetic	10
Algorithms (GA)— Control parameters, Number of generation, population size, selection, reproduction, crossover and	10

On completion of the course student will be able to:

- State and formulate the optimization problem, without and with constraints, by using design variables from an engineering design problem.
- 2. Apply classical optimization techniques to minimize or maximize a multi-variable objective function, without or with constraints, and arrive at an optimal solution.
- Formulate a mathematical model and apply linear programming technique by using Simplex method. Also extend the concept of dual Simplex method for optimal solutions.
- 4. Apply gradient and non-gradient methods to nonlinear

- optimization problems.
- 5. Apply interior or exterior penalty functions for the constraints to derive the optimal solutions.
- 6. Able to apply Genetic algorithms for simple electrical problems.

Text Books:

- 1. "Engineering optimization: Theory and practice"-by S. S.Rao, NewAge International (P) Limited, 3rd edition,1998.
- Soft Computing with Matlab Programming by N.P.Padhy&S.P.Simson,Oxford University Press –2015

- "Optimization methods in operations Research and Systems Analysis" by K.V.Mitaland C.Mohan, New Age International (P) Limited, Publishers, 3rd edition, 1996.
- Genetic Algorithms in search, optimization, and Machine Learning by DaviE.Goldberg, ISBN:978-81-7758-829-3, Pearsonby Dorling Kindersley (India) PvtLtd.
- 3. "Operations Research: An Introduction" by H.A.Taha, PHI Pvt. Ltd., 6thedition.
- 4. Linear Programming by G. Hadley.

ELECTRICAL ENERGY CONSERVATION AND AUDITING (Open Elective)

Subject Code	18XXEEOM0XC	IA Marks	30
Number of Lecture	03	Exam Marks	70
Hours/week			
Total Number of Lecture	48	Exam Hours	03
Hours			

Credits-03

Course Objectives:

This course enable student to:

- 1. Explain energy efficiency, scope, conservation and technologies.
- 2. Discuss energy efficient lighting systems.
- 3. Calculate power factor of systems and propose suitable compensation techniques.
- 4. Explain the working of energy instruments.
- 5. Discuss energy conservation in HVAC systems.
- **6.** Calculate life cycle costing analysis and return on investment on energy efficient technologies.

Unit 1: Basic Principles of Energy Audit and International Acts	Hours
on Energy	
Energy audit – Definitions – Concept – Types of audit – Energy	
index - Cost index - Pie charts - Sankey diagrams - Load	
profiles - Energy conservation schemes and energy saving	10
potential - Numerical problems - Indian energy scenario and	
consumption, energy needs of growing economy, energy	
intensity, long term energy scenario, energy pricing, energy	
security, energy conservation and its importance, National action	
plan on climate change Energy and environment, air pollution,	
climate change United Nations Framework Convention on	
Climate Change (UNFCC), sustainable development, Kyoto	
Protocol, Conference of Parties	
Unit 2: Energy conservation opportunities in lighting	

Modification of existing systems – Replacement of existing systems – Priorities Definition of terms and units – Luminous efficiency – Luminance or brightness – Types of lamps – Types of lighting – Electric lighting fittings (luminaries) – Flood lighting – White light LED and conducting Polymers – Energy conservation measures, lighting energy audit, case studies.	10
Unit 3: Power Factor and energy instruments	
Power factor – Methods of improvement – Location of capacitors – Power factor with nonlinear loads – Effect of	09
harmonics on Power factor – Numerical problems Energy	
Instruments – Watt–hour meter – Data loggers –	
Thermocouples— Pyrometers — Lux meters — Tong testers — Power analyzer.	
Unit 4: HVAC Systems and ECBC	
-	
Heating, ventilation, air conditioning (HVAC), fenestrations	09
Energy Conservation Building Codes (ECBC), building	
envelope, insulation, lighting, water pumping, inverter and	
energy storage/captive generation, elevators and escalators, star	
labeling for existing buildings, Energy Service Companies	
based case studies.	
Unit 5: Energy Efficient Motors and Financial Aspects of	
Conservation Technologies	
Energy Efficient motors Design, construction, Gorilla fan case	
study(Additional practical topic) Understanding energy cost, Economics Analysis – Depreciation Methods – Time value of money	10
Rate of return – Present worth method – Replacement analysis –	10
Life cycle costing analysis — Economics of energy efficient motors	
and systems. Need of investment, appraisal and criteria, Calculation	
of simple payback period–Return on investment – Net present value	
- Internal rate of return – numerical examples Applications of life	
cycle costing analysis – Return on investment –Numerical examples.	

On completion of the course student will be able to:

- 1. Explain energy efficiency, conservation and various technologies
- 2. Design energy efficient lighting system
- Calculate power factor of systems and propose suitable compensation techniques
- 4. Explain the working of Energy Instruments.
- 5. Explain energy conservation techniques in HVAC Systems
- 6. Calculate life cycle costing analysis and return on investment on energy efficiency technologies.

Text Books:

- 1. Hand Book of Energy Audit by Sonal Desai- Tata McGrawhill
- 2. Energy efficient electric motors by John .C. Andreas, Marcel Dekker Inc. Ltd-2nd edition, 1995

- 1. Energy management by W.R. Murphy & G. Mckay Butter worth, Elsevier publications.2012
- 2. Electric Energy Utilization and Conservation by S C Tripathy, Tata McGraw hill publishing company Ltd. NewDelhi.
- Energy management by Paul o' Callaghan, Mc–Graw Hill Book company–1st edition, 1998.
- Energy management hand book by W.C.Turner, John wileyandsons.
- 5. Energy management and conservation –k v Sharma and pvenkataseshaiah-I K International Publishing Housepvt.ltd,2011.
- http://www.energymanagertraining.com/download/Gazette_of_Indi aPartIISecI-_37_25-08- 2010.pdf

ELECTRICAL AND HYBRID VEHICLES				
((Open Elective)			
Subject Code	18XXEEOM0XD	IA Marks	30	
Number of Lecture	03	Exam Marks	70	
Hours/week				
Total Number of Lecture	48	Exam Hours	03	
Hours				
Credits-03				

Credits-0

Course Objectives:

This course will enable student to:

- 1. Explain working of hybrid and electric vehicles, its performance and characteristics.
- 2. Discuss hybrid vehicle configuration and its components.
- 3. Explain electric vehicle drive systems.
- 4. Discuss the properties of energy storage systems.
- 5. Compare different Energy management strategies

Unit 1: Introduction	Hours
Conventional Vehicles: Basics of vehicle performance,	
vehicle power source characterization, transmission	
characteristics, and mathematical models to describe vehicle performance.	10
Introduction to Hybrid Electric Vehicles: History of hybrid	
and electric vehicles, social and environmental importance of	
hybrid and electric vehicles.	
Unit 2: Hybrid Electric Drive Trains	
Architecture of Hybrid Electric Vehicles (HEV), analysis of	10
drive trains, energy use in conventional vehicles, energy	10
saving potential of hybrid drive trains, various HEV	
configurations and their operation model.	
Power flow in HEV: Power flow control in series, parallel,	
series-parallel hybrid system. Torque and Speed coupling.	
Unit 3: Electric Drive Trains	

Architecture of electric drive train, electric vehicle configuration, electric drive trains, EV power source	09
configurations.	
Single and Multi-Motor drives, In wheel drives, requirements	
of different electric motors used in EVs, Power-Torque-Speed	
characteristics, electric propulsion systems.	
Unit 4: Energy Storage	
Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices.	09
Unit 5: Energy Management Strategies	
Introduction to energy management strategies used in hybrid and electric vehicles, classification, comparison of different energy management strategies, implementation issues of energy management strategies. Functions of control system in HEVs & EVs, Elementary control theory, Electronic control unit, control area network, control variables, classifications of Hybrid electronic control unit, fuzzy logic based control	10
system	

On completion of the course student will be able to:

- 1. Illustrate the working of hybrid and electric vehicles, its performance and characteristics.
- 2. Analyze hybrid vehicle configuration and its components.
- 3. Discuss electric vehicle drive systems.
- 4. Illustrate electric propulsion systems.
- 5. Infer the properties of energy storage systems.
- 6. Distinguish different energy management strategies.

Question paper pattern:

The question paper will have 10 questions.

- 1. Each full question carries 14marks.
- Each full question will have sub question covering all topics under unit.

The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- C. Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011.
- 2. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.

- M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, HybridElectric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.
- 2. T. Denton, "Electric and Hybrid Vehicles", Routledge, 2016.

INTELLIGENT CONTROL & ITS APPLICATIONS			
	(Open Elective)		
Subject Code	18XXEEOM0XE	IA Marks	30
Number of Lecture	03	Exam Marks	70
Hours/week			
Total Number of Lecture	48	Exam Hours	03
Hours			
Credits – 03			

Course Objectives:

This course will enable student to:

- 1. Explain the basic intelligent controller concepts
- 2. Understand concepts of feed forward neural networks and learning and understanding of feedback neural networks.
- 3. Discuss the concept of genetic algorithm.
- 4. Understand the basic knowledge of fuzzy logic control.
- 5. Apply the knowledge of fuzzy logic control, genetic algorithm and neural network to the real problems.

Unit 1: Introduction to Intelligent Control	Hours
Introduction and motivation. Approaches to intelligent control. Architecture for intelligent control. Symbolic reasoning system, rule-based systems, the AI approach. Knowledge representation, Expert systems.	09
Unit 2: Artificial Neural Networks	
Concept of Artificial Neural Networks, its basic mathematical model, McCulloch- Pitts neuron model, simple perception, Adeline and Madeline, Feed-forward Multilayer Perception. Learning and Training the neural network. Introduction, derivation, algorithm, flowchart, limitation-Error Back propagation, Hopfield, Radial bases function	10
Unit 3: Genetic Algorithm	

Basic concept of Genetic algorithm and detail algorithmic steps, adjustment of free parameters. Solution of typical control problems using genetic algorithm. Concept on some other search techniques like tab search and ant-colony search techniques for solving optimization problems	10
Unit 4: Fuzzy Logic System	
Introduction to crisp sets and fuzzy sets, basic fuzzy set operation and approximate reasoning. Introduction to fuzzy logic modeling and control. Fuzzification, inferencing and defuzzification. Fuzzy knowledge and rule bases. Fuzzy modeling and control schemes for nonlinear systems. Fuzzy logic control for nonlinear time- delay system. Implementation of fuzzy logic controller.	10
Unit 5: Applications	09
Aerospace and data mining applications of Genetic Algorithm	09
- Neural Network and Fuzzy Logic Control applications in	
Smart grid, Electric drives and Distributed generation.	

On completion of the course student will be able to:

- 1. Infer representations applied to artificial intelligence techniques
- 2. Illustrate the use of artificial neuron in perceptron models and back propagation algorithm to multilayer feed forward networks
- 3. Develop rule based and decision making with the use of classical and fuzzylogic systems
- 4. Analyze the concept of geneticalgorithm.
- 5. Analyze the fuzzy logic controller using MATLAB.
- 6. Discover various applications of neural and fuzzy logic systems inelectrical Engineering

Text Books:

- Simon Haykins, Neural Networks: A comprehensive Foundation, Pearson Edition. 2003.
- T.J. Ross, Fuzzy logic with Fuzzy Applications, McGraw Hill Inc,1997.
- 3. David E Goldberg, Genetic Algorithms. Wesley PublishingCompany,1989
- 4. John Yen and Reza Langari, Fuzzy logic Intelligence, Control, and Information, Pearson Education, Indian Edition, 2003.
- Neural Network, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications.
 Rajasekaran and G. A. VijayalakshmiPai (Prentice Hall India, 2010)

- 1. M.T. Hagan, H. B. Demuth and M. Beale, Neural Network Design, Indian reprint, 2008.
- 2. Fredric M. Ham and IvicaKostanic, Principles of Neuro computing for science and Engineering, McGraw Hill,2001.
- 3. N. K. Bose and P. Liang, Neural Network Fundamentals with Graphs, Algorithms, and Applications, Mc. Graw Hill, Inc. 1996.
- 4. Yung C. Shin and ChengyingXu, Intelligent System, Modeling, Optimization and Control, CRC Press, 2009.
- 5. N. K. Sinha and Madan M Gupta, Soft computing & Intelligent Systems, Theory & Applications, Indian Edition, Elsevier, 2007.
- WitoldPedrycz, Fuzzy Control and Fuzzy Systems, Overseas Press, Indian Edition. 2008.

ELECTRICAL MATERIALS (Open Elective)			
Subject Code	18XXEEOM0XF	IA Marks	30
Number of Lecture	03	Exam Marks	70
Hours/week			
Total Number of Lecture	45	Exam Hours	03
Hours			

Credits - 03

Course Objectives:

This course will enable student to:

- 1. Describe the formation and properties of conducting material.
- 2. Explain the formation and properties of Semiconductor Materials.
- 3. Infer the formation and properties of Dielectric Materials.
- 4. Explain the formation and properties of Magnetic Materials.
- 5. Describe the formation and properties of Special Purpose Materials.

Unit 1: Conducting Materials	Hours
Review of metallic conduction on the basis of free electron	
theory. Fermi-Dirac distribution – variation of conductivity with	10
temperature and composition, materials for electric resistors-	1
general electric properties; material for brushes of electrical	1
machines, lamp filaments, fuses and solder.	
Unit 2: Semiconductor Materials	
Mechanism of conduction in semiconductors, density of carriers	09
in intrinsic semiconductors, the energy gap, types of	1
semiconductors. Hall effect, compound semiconductors, basic	1
ideas of amorphous and organic semiconductors.	
Unit 3: Dielectric Materials	
Dielectric as Electric Field Medium, leakage currents, dielectric	
loss, dielectric strength, breakdown voltage, breakdown in solid	1
dielectrics, flashover, liquid dielectrics, electric conductivity in	10
solid, liquid and gaseous dielectrics, Ferromagnetic materials,	10
properties of ferromagnetic materials in static fields,	
spontaneous, polarization, curie point, anti-ferromagnetic	
materials, piezoelectric materials, pyro electric materials.	

Unit 4: Magnetic Materials	
Classification of magnetic materials, spontaneous magnetization in ferromagnetic materials, magnetic Anisotropy, Magnetostriction, diamagnetism, magnetically soft and hard materials, special purpose materials, feebly magnetic materials, Ferrites, cast and cermet permanent magnets, ageing of magnets. Factors effecting permeability and hysteresis	10
Unit 5: Materials for Electrical Applications & Special	

Unit 5: Materials for Electrical Applications & Special Purpose Materials

Materials used for Resistors, rheostats, heaters, transmission line structures, stranded conductors, bimetals fuses, soft and hard solders, electric contact materials, electric carbon materials, thermocouple materials. Solid, Liquid and Gaseous insulating materials, Effect of moisture on insulation. Refractory Materials, Structural Materials, Radioactive Materials, Galvanization and Impregnation of materials, Processing of electronic materials, Insulating varnishes and coolants, Properties and applications of mineral oils, Testing of Transformer oil as per ISI

10

Course outcomes:

On completion of the course student will be able to:

- Understand various types of conducting, their properties in various conditions.
- 2. Evaluate semiconductor materials and technologies
- Understand various types of dielectric materials, their properties in various conditions.
- 4. Evaluate magnetic materials and their behavior.
- Acquire Knowledge on Materials used in electrical engineering and applications.
- 6. Able to test Transformer oil as per standard.

Text Books:

- R K Rajput", "A course in Electrical Engineering Materials", Laxmi Publications, 2009
- "T K Basak", "A course in Electrical Engineering Materials", New Age Science Publications 2009

- 1. TTTI Madras, "Electrical Engineering Materials", McGraw Hill Education, 2004.
- "Adrianus J. Dekker", Electrical Engineering Materials, PHI Publication, 2006.
- 3. S. P. Seth, P. V. Gupta "A course in Electrical Engineering Materials", DhanpatRai& Sons, 2011.

INDUSTRIAL ELECTRICAL SYSTEMS

(Open Elective)

Subject Code	18XXEEOM0XG	IA Marks	30
Number of Lecture	03	Exam Marks	70
Hours/week			
Total Number of Lecture	48	Exam Hours	03
Hours			

Credits - 03

Course Objectives:

This course will enable student to:

- 1. Explain Tariff structure and protection components.
- 2. Compare various types wiring systems and IE rules.
- 3. Describe the Illumination technology.
- 4. Compare various types of cables.
- 5. Discuss on PLC applications.
- **6.** Explain the implementation of SCADA for various applications.

Unit 1: Electrical System Components	Hours
LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components- Fuse, MCB, MCCB, ELCB, inverse current characteristics, symbols, single line diagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and	10
Electrical safety practices	
Unit 2: Residential and Commercial Electrical Systems	
Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing	10
of wire, rating of main switch, distribution board and protection	
devices, earthing system calculations, requirements of	
commercial installation, deciding lighting scheme and number of	
lamps, earthing of commercial installation, selection and sizing	
of components.	

Unit 3: Illumination Systems		
Understanding various terms regarding light, lumen, intensity,		
candle power, lamp efficiency, specific consumption, glare, space	10	
to height ratio, waste light factor, depreciation factor, various		
illumination schemes, Incandescent lamps and modern		
luminaries like CFL, LED and their operation, energy saving in		
illumination systems, design of a lighting scheme for a residential		
and commercial premises, flood lighting.		
Unit 4: Industrial Electrical Systems		
HT connection, industrial substation, Transformer selection,		
Industrial loads, motors, starting of motors, SLD, Cable and	10	
Switchgear selection, Lightning Protection, Earthing design, Power factor correction – kVAR calculations, type of		
compensation, Introduction to PCC, MCC panels. Specifications		
of LT Breakers, MCB and other LT panel components. DG		
Systems, UPS System, Electrical Systems for the elevators,		
Battery banks, Sizing the DG, UPS and Battery Banks, Selection of UPS and Battery Banks.		
Unit 5: Industrial Electrical System Automation		
Study of basic PLC, Role of in automation, advantages of process		
automation, PLC based control system design, Panel Metering		
and Introduction to SCADA system for distribution automation.		
Course outcomes:		
On completion of the course student will be able to:		
1. Illustrate Tariff structure and protection components.		
2. Discuss various types wiring systems and IE rules.		
3. Explain the Illumination technology.		
4. Distinguish various types of cables.		
5. Discover PLC applications.		
**		

Text Books:

1. S. L. Uppal and G. C. Garg, "Electrical Wiring, Estimating & Costing", Khannapublishers, 2008.

- 2. K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007.
- 3. S. Singh and R. D. Singh, "Electrical estimating and costing", DhanpatRai and Co., 1997.

- 1. Web site for IS Standards.
- H. Joshi, "Residential Commercial and Industrial Systems", McGrawHill Education, 2008.

ADVANCED CONTROL SYSTEMS				
(0	(Open Elective)			
Subject Code	18XXEEOM0XH	IA Marks	30	
Number of Lecture	03	Exam Marks	70	
Hours/week				
Total Number of Lecture	48	Exam Hours	03	
Hours				

Credits -03

Course Objectives:

The objectives of this course is to acquire knowledge on

- 1. formulation of different models using state space analysis
- 2. analysis of state feedback control through pole placement technique.
- 3. analysis of a nonlinear system using Lypanov's method of stability
- formulation of Euler Lagrange equation to optimize typical functional and solutions.
- 5. optimal controller design using LQG framework

Unit 1: State Space Analysis	Hours
State Space Representation –Solution of state equation –State transition matrix, –Canonical forms –Controllable canonical form –Observable canonical form, Jordan Canonical Form.	09
Unit 2: Controllability, Observability and Design of Pole Placement Tests for controllability and observability for continuous time systems –Time varying case –Minimum energy control –Time invariant case –Principle of duality –Controllability and observability form Jordan canonical form and other canonical forms –Effect of state feedback on controllability and observability –Design of state feedback control through pole placement.	10
Unit 3: Describing Function and Stability Analysis	

Introduction to nonlinear systems, Types of nonlinearities, describing functions, Introduction to phase–plane analysis. Stability in the sense of Lyapunov – Lyapunov's stability and Lypanov's instability theorems –Direct method of Lyapunov for the linear and nonlinear continuous time autonomous systems.	10
Unit 4: Calculus of variations Minimization of functional of single function –Constrained minimization –Minimum principle –Control variable inequality constraints –Control and state variable inequality constraints – Euler lagrangine equation	09
Unit 5: Optimal Control Design Linear Quadratic Optimal Regulator (LQR) problem formulation -Optimal regulator Design by parameter adjustment (Lyapunov method) -Optimal regulator Design by Continuous Time Algebraic Riccatti equation (CARE) - Optimal controller Design using LQG framework.	10

- 1. Able to design the state space model of control system and formulate different state models
- 2. Able to design of control system using the pole placement technique
- 3. Able to analyse of nonlinear system using the describing function technique and phase plane analysis.
- 4. Able to analysis the stability analysis using lypnov method.
- Able to minimize the function using calculus of variation studied.
- 6. Able to design optimal controller using LQG framework.

Text Books:

- Modern Control Engineering by K. Ogata, Prentice Hall of India, 3rd edition, 1998.
- Automatic Control Systems by B.C. Kuo, Prentice Hall Publication

- Modern Control System Theory by M. Gopal, New Age International Publishers, 2nd edition, 1996.
- 2. Control Systems Engineering by I.J. Nagarath and M.Gopal, New Age International (P) Ltd.
- 3. Digital Control and State Variable Methods by M. Gopal, Tata McGraw–Hill Companies, 1997

Open Elective Courses Offered by ME to other Departments

S.	Subject Code	Name of the subject	L	T	P	Cr
No.						
	18XXMEOX0XA	Operations Research	3	0	0	3
:	18XXMEOX0XB	Fundamentals of Mechanical Engineering	3	0	0	3
:	18XXMEOX0XC	Industrial Robotics	3	0	0	3
	18XXMEOX0XD	Engineering Materials	3	0	0	3
:	18XXMEOX0XE	Introduction to Material Handling	3	0	0	3
	18XXMEOX0XF	Production Planning and Control	3	0	0	3
,	18XXMEOX0XG	Non-Conventional Sources of Energy	3	0	0	3
	18XXMEOX0XH	Fluid Mechanics and Fluid Machinery	3	0	0	3

Operations Research SEMESTER - XX				
Subject Code	18XXMEOX0XA	Internal Marks	30	
Number of Lecture Hours/Week	3(L)	External Marks	70	
Total Number of Lecture Hours	50	Exam Hours	03	
Credits = 03				

Course Objectives:

Enable the students to

- Understand the definition, scope, objectives, phases, models and limitations of operations research and developing the ability to formulate the linear programming problems for minimizing the project cost and maximizing its profit.
- 2. Solve linear programming problems using various techniques based on the constraints
- 3. Understand about different application areas of operations research like transportation problem, assignment model, sequencing models.
- Suggest optimal sequence and replacement policy and economic order 4. quantities to be maintained for better and economic growth of the industry.
- 5. Suggest optimal game strategies and estimation of waiting times in waiting line problems in the competitive business world.

Unit -1	Hours
Introduction to Operations Research: Definition, Features, types of	
OR models, Methodology, Tools, Limitations and applications of	
Linear Programming.	10
Linear Programming-I: Introduction, Formulation of Linear	
Programming Problem (LPP), Assumptions for solving LPP,	
Applications of LPP, Graphical method of solving LPP.	
Unit -2	
Linear Programming-II: Introduction, steps in solving problems	
using simplex method, Principle of simplex method- Maximization	
and minimization problems, solution by simplex method, limitations	10
of LPP simplex method.	10
Linear Programming-III: Introduction, Concept of primal, dual	
relationship, formulation of the dual of the primal problem, solution	
of LP problems using dual simplex method.	
Unit – 3	

Transportation Problem: Basics, Solution of Transportation	
problem with several methods, performing optimality test, degeneracy	
in transportation problem.	
Assignment model: Definition, Formulation, Different methods of	10
solutions, Hungarian assignment method, unbalanced assignment	10
problems, travelling salesman problems.	
Sequencing problems: introduction, basics, types of sequencing	
problems, priority sequencing, sequencing n-jobs through two	
machines, n-jobs and m-machines, two jobs 3-machines case.	
Unit – 4	•
Replacement: Introduction – replacement of items that deteriorate	
with time – when money value is not counted and counted –	
replacement of items that fail completely, group replacement.	10
Inventory Control: Introduction, Types of Inventories, Costs	
associated with inventories, the concept of EOQ, Deterministic	
inventory problems with no shortages, with shortage.	
Unit - 5	.1
Queuing Theory: Introduction, Queuing system, elements of	
Queuing system Operating characteristics of a Queuing system,	
Classification of queuing models: Model-I [M/M/1:∞/FIFO], Model-	
III [M/M/1: N/FIFO].	10
Game Theory: Introduction, Two Person Zero sum games, Maximin	
- Minimax principle, Games without saddle points- mixed strategies,	
Graphical solution of 2Xn, mX2 games, and Dominance property, P-	
system, S-system, Q-system and Ss-system	
Course outcomes:	.1

- Formulate and solve mathematical model (linear programming problem) for real situations like production and distribution of goods using basic linear programming techniques li graphical methods
- Apply the concepts of linear programming for decision making like simplex and dual simplex algorithms in production industries.
- 3. Calculate the optimal values of cost, job distribution and placement using transportation, assignment and sequencing methods
- Select the best optimal inventory and replacement time for the goods produced in an industry for its better and economic growth using inventory and replacement techniques.
- 5. Select the best optimal time and strategy to be followed by any organization to identify the waiting times and strategies to be implemented using waiting lines and game theory techniques for a continuous and successful growth of an industry.

TEXT BOOKS:

- Operation Research / Premkumar Gupta, D.S. Hira / S. Chand
- Operations Research / S.D.Sharma-KedarnathRamnath(JNTU)

REFERENCES:

- 1. Operations Research / R. Pannerselvam / PHI Publications.
- 2. Operation Research /J.K.Sharma/MacMilan.
- 3. Operation Research An Introduction / Taha / Pearson
- Operations Research / A.M.Natarajan, P. Balasubramani, A. Tamilarasi / Pearson Education.

- Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. All questions carries 14 marks each
- Each full question will have sub question covering all topics under a course outcome

Fundamentals of Mechanical Engineering SEMESTER - XX			
Subject Code	18XXMEOX0XB	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
Credits – 03			

Course Objectives:

Enable the students to

- Understand the concepts of fluid properties like specific gravity, viscosity, density, surface tension
- 2. To study the classification of turbines and work done and efficiency of the different turbines and also study about draft tube theory and to determine the function efficiency.
- To study about specific speed and performance characteristics of different 3. types of turbines.
- 4. To study automobile engine working, valve timing and associated systems such as lubricating system, cooling system, fuel feed system, ignition system etc., their necessity, requirements, construction details, different types and their working
- 6. To study the construction, working principles and advantages of belt and rope drives, selection of belt drive- types of belt drives, V-belts, types of coupling.

Unit -1	Hours
Fluid Mechanics: Dimensions and units: physical properties of fluids- specific gravity, viscosity and its significance, surface tension, capillarity, and vapor pressure. Atmospheric gauge and vacuum pressure – Measurement of pressure. Manometers- Piezometer, Utube, inverted and differential manometers.	10
Unit -2	
Impact of jets: hydrodynamic force of jets on stationary and moving flat, inclined, and curved vanes, jet striking centrally and at tip, velocity diagrams, work done and efficiency, flow over radial vanes.	10
Unit - 3	
Hydraulic Turbines and Governing systems: Classification of turbines; Working principle, Efficiency calculation and Design principles for Pelton Wheel, Francis and for Kaplan turbines; Governing of turbines; Performance and characteristic curves	10
Unit – 4	
I. C. Engines : Classification, working principles – valve and port timing diagrams – air standard cycles –fuel injection system.	10

carburetion, ignition, cooling and lubrication – Engine performance	
evaluation.	
Spark Ignition and Combustion Ignition engines – Classification,	
working principles, Types of engines.	
Unit - 5	
Belt drives: Introduction, Belt and rope drives, selection of belt	
drive- types of belt drives, V-belts, velocity ratio of belt drives, slip	
of belt, creep of belt, tensions for flat belt drive, angle of contact,	10
centrifugal tension, maximum tension of belt,	
Coupling: Brief introduction of coupling, Rigid couplings - muff,	
split muff and flange couplings, flexible couplings - flange coupling	

- 1. Understand the concepts of fluid properties like specific gravity, viscosity, density, surface tension.
- To study the classification of turbines and work done and efficiency of the different turbines and also study about draft tube theory and to determine the function efficiency.
- 3. This study is also used for the estimation of efficiency and performance of the turbine with the study of characteristics curves.
- 4. To study automobile engine working, valve timing and associated systems such as lubricating system, cooling system, fuel feed system, ignition system etc., their necessity, requirements, construction details, different types and their working
- To study the construction, working principles and advantages of belt and rope drives, selection of belt drive- types of belt drives, V-belts, types of coupling.

TEXT BOOKS:

- 1. Basic Mechanical Engineering / Pravin Kumar/ Pearson
- 2. Thermal Engineering-R.S Khurmi/JS Gupta/S.Chand.
- 3. Introduction to Engineering Materials / B.K. Agrawal/ McGraw Hill

REFERENCES:

- 1. Fundamental of Mechanical Engineering/ G.S. Sawhney/PHI
- 2. Thermal Science and Engineering / Dr. D.S. Kumar/ Kataria

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. All questions carries 14 marks each
- Each full question will have sub question covering all topics under a course outcome

Industrial Robotics			
Subject Code	18XXMEOX0XC	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03

Credits - 03

Course Objectives:

Enable the students to

- Understand various applications of robotics and classification of coordinate system and control systems
- 2. Build the concepts of components of industrial robotics.
- 3. Determine kinematic analysis with D-H notation, forward and inverse kinematics
- 4. Model trajectory planning for a manipulator by avoiding obstacles
- 5. Understand different types of actuators and importance of application of robots in manufacturing

Unit -1	Hours
Introduction: Automation and Robotics, CAD/CAM and Robotics – An overview of Robotics –present and future applications – classification by coordinate system and control system.	10
Unit -2	
Components of the Industrial Robotics: Function line diagram representation of robot arms, common types of arms. Components, Architecture, number of degrees of freedom – Requirements and challenges of end effectors, determination of the end effectors, comparison of Electric, Hydraulic and Pneumatic types of locomotion devices.	10

1	
Unit – 3	
Motion Analysis: Homogeneous transformations as applicable to rotation and translation – problems. Manipulator Kinematics: Specifications of matrices, D-H notation joint coordinates and world coordinates Forward and inverse kinematics – problems.	10
Unit – 4	
Trajectory Planning: General considerations in path description and generation. Trajectory planning and avoidance of obstacles, path planning, Skew motion, joint integrated motion –straight line motion – Robot programming, languages and software packages-description of paths with a robot programming language.	10
Unit – 5	
Robot Actuators and Feed Back Components: Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors. Feedback components: position sensors— potentiometers, resolvers, encoders— Velocity sensors. Robot Applications in Manufacturing: Material Transfer - Material handling, loading and unloading- Processing - spot and continuous arc welding & spray painting - Assembly and Inspection.	10
Course outcomes: 1. Understand various applications of robotics and classifica coordinate system and control systems	tion of

- 2. Build the concepts of components of industrial robotics.
- 3. Apply kinematic analysis with D-H notation, forward and inverse kinematics
- 4. Model trajectory planning for a manipulator by avoiding obstacles.
- 5. Understand different types of actuators and various applications of robots in manufacturing

TEXT BOOKS:

- 1.Industrial Robotics / Groover M P /Mc Graw Hill
- 2. Introduction to Robotics / John J. Craig/ Pearson

REFERENCES:

1. Introduction to Robotics/ Saeed B Niku / Wiely Publications.

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. All questions carries 14 marks each
- Each full question will have sub question covering all topics under a course outcome

ENGINEERING MATERIALS			
SEMESTER XX			
Subject Code	18XXMEOX0XD	Internal Marks	30
Number of Lecture Hours/Week	03	External Marks	70
Total Number of Lecture	50	Exam Hours	03

Credits - 03

Course objectives:

This course will enable students to:

- . Classify different bonds in solids and understand crystallization of the metals, for the formation of the solid solutions and compounds.
- 2. Understand different phase diagrams.
- 3. Recorgnize the property requirements of a given application and suggest a suitable ferrous and non ferrous metal and their alloys.
- 4. Illustrate the property requirements of a given application and suggest appropriate heat treatment
- 5. Identify the property requirements of a given application and suggest a suitable ceramics, composite materials
- 6. Identify the relationships between structure, composition and properties of different engineering materials.

Unit -1	Hours
Structure of Metals and Constitution of alloys: Bonds in Solids – Metallic bond - crystallization of metals, grain and grain boundaries, effect of grain boundaries on the properties of metal / alloys – determination of grain size. Necessity of alloying, types of solid solutions, Hume Rothery's rules, intermediate alloy phases, and electron compounds. Tensile, compression and torsion tests; Young's modulus, relations between true and engineering stress-strain curves, generalized Hooke's law, yielding and yield strength, ductility, resilience, toughness and elastic recovery.	10
Unit -2	
Equilibrium Diagrams: Experimental methods of construction of equilibrium diagrams, Isomorpous alloy systems, equilibrium cooling and heating of alloys, lever rule, coring, miscibility gaps, eutectic systems, congruent melting intermediate phases, peritectic reaction. Transformations in the solid state – allotropy, eutectoid, peritectoid reactions, phase rule, relationship between equilibrium diagrams and properties of alloys.	8
Unit - 3	
Ferrous & non-ferrous metals and their alloys Structure and	12

properties of white cast iron, malleable cast iron, grey cast iron, spheroid graphite cast iron, alloy cast irons. Classification of steels, structure and properties of plain carbon steels, low alloy steels, Hadfield manganese steels, tool and die steels. Structure and properties of copper and its alloys, Aluminum and its alloys, Titanium and its alloys

Unit – 4

Heat treatment of Alloys: Annealing, normalizing, hardening, TTT diagrams, tempering, hardenability, surface-hardening methods (carburizing, carbo-nitriding, cyaniding, induction hardening and flame hardening), age hardening treatment, and cryogenic treatment of alloys. vacuum and plasma hardening

8

Unit-5

Ceramic and composite materials: Crystalline ceramics, glasses, cermets, abrasive materials, nanomaterial's – definition, properties and applications of the above. Classification of composites, various methods of component manufacture of composites, particle – reinforced materials, fiber reinforced materials, metal – ceramic mixtures, metal – matrix composites and C – C composites.

12

Course outcomes:

On completion of the course, student will be able to

- Classify different bonds in solids and understand crystallization of the metals, for the formation of the solid solutions and compounds.
- 2. Different phase diagrams and study of binary phase diagrams
- 3. Recorgnize the property requirements of a given application and suggest suitable ferrous & non ferrous alloys
- 4. Analyze the property requirements of a given application and suggest appropriate heat treatment
- 5. Identified the property requirements of a given application and suggest a suitable ceramics, composite materials
- 6. Understand the relationships between structure, composition and properties of different engineering materials

Text Books:

- Introduction to Physical Metallurgy Sidney H. Avener McGrawHill
- Essential of Materials science and engineering Donald R.Askeland Thomson

- 1. Material Science and Metallurgy V.D.Kodgire and S.V.Kodgire
- 2. Materials Science and engineering Callister & Baalasubrahmanyam
- Material Science for Engineering students Fischer Elsevier Publishers.
- 4. Material science and Engineering V. Rahghavan
- Introduction to Material Science and Engineering Yip-Wah Chung CRC Press.
- Material Science and Metallurgy A V K Suryanarayana B S Publications.
- 7. Material Science and Metallurgy U. C. Jindal Pearson Publication

Web Source References:

- 1. https://www.iitm.ac.in/mmresearch
- 2. http://nptel.ac.in/courses/113106032/3
- 3. https://en.wikipedia.org/wiki/Materials_science

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. All questions carries 14 marks each
- 3. Each full question will have sub question covering all topics under a course outcome

INTRODUCTION TO MATERIAL HANDLING SEMESTER - XX					
Subject Code	Subject Code 18XXMEOX0XE Internal Marks 30				
Number of Lecture Hours/Week	3(L)	External Marks	70		
Total Number of Lecture Hours	50	Exam Hours	03		
Credits = 03					

Credits – 03

COURSE OBJECTIVES:

Students should be able

- 1. To understand the classification of material handling equipment
- 2. To explain the usage of different material handling equipment in industry
- 3. To know how to connect loading stations to the different discharge conditions.
- 4. To explain the usage of cranes at industries

5. To explain the usage of hoists and monorails at industries

Unit -1	Hours
Introduction to materials handling, examples of materials equipment, examples of materials handling equipment, continuous conveying, intermittent conveying, examples, lifting, hoisting, handling of bulk goods and piece goods, cranes and conveyors, principles of calculation of conveying equipment, cycle time, bulk materials and bulk density, angle of repose, example for a belt conveyor and a simple hoist.	10
Unit -2	
Belt conveyors, constructional details, toughing angle, idlers, belt specifications, chutes, skirt boards, ploughs, belt conveyor layouts, belt trippers and typical examples, roller conveyors, overhead conveyors, apron conveyors, component parts and operational details and applications with typical layouts.	10
Unit – 3	
Unit materials handling and storage: Unit load concept (platform sheet industrial hand trucks, self contained unit load, palletless handling, introduction only), industrial hand trucks, powered industrial trucks, automated guided vehicles, basic storage and equipment system, Automated storage and retrieval systems (AS/RS), carosel storage system and its applications.	10
Unit – 4	
Cranes Jib cranes like wall mounted and travelling type, stability criteria, wheel loads, wheel trucks and bogeys, number of mechanisms in jib cranes, jib construction. Harbour cranes, luffing and level luffing cranes, shipyard gantry cranes,	10

Unit – 5	
Hoists and monorails Portal frames and slewing rings and bearings	10
typical stability, calculations of portal cranes, types of hoists	10

- 1. Classify the material handling equipment
- 2. Explain the usage of different material handling equipment in industry
- Discuss how to connect loading stations to the different discharge conditions
- 4. Associate the usage of cranes at industries
- 5. Associate the usage of hoists and monorails at industries

TEXT BOOKS

- 1. Material handling handbook, 2nd edition, ASME, 1985
- Automation production systems and computer integrated manufacturing, Mikell P Groover, Prentice Hall of India, 2002.

REFERENCE BOOK

- 1. R.O. Bailey, "Bulk material handling by conveyor belt I and II" M.A. Al
- 2. Frutchbaum, "Bulk solids handling

- Question paper contains 12 Questions, 2 from each course outcome. The student must answer 6 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 12 marks each
- 3. Each full question will have sub question covering all topics under a course outcome

PRODUCTION PLANNING AND CONTROL SEMESTER - XX			
Subject Code	118XXMEOX0XF	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
Credits 03			

Course Objectives:

Enable the students to

- Understand the concepts of production design concepts for production and service systems
- 2. Apply forecasting techniques for various firms, namely qualitative & quantitative methods to optimize/make best use of resources in achieving their objectives.
- Identify different strategies employed in manufacturing and service 3. industries to plan inventory
- 4. Apply different scheduling policies in planning and control and make best use of resources.
- 5. Measure the effectiveness, identify likely areas for improvement, develop and implement improved planning and control methods for production systems.

systems.	
Unit -1	Hours
Introduction : Definition – objectives and functions of production	
planning and control – elements of production control – types of	10
production – organization of production planning and control	
department – internal organization of department.	
Unit -2	
Forecasting – importance of forecasting – types of forecasting, their	10
uses – general principles of forecasting – forecasting techniques –	10
qualitative methods and quantitative methods.	
Unit – 3	
Inventory management – functions of inventories – relevant	
inventory costs – ABC analysis – VED analysis – EOQ models –	
Inventory control systems – P–Systems and Q-Systems	12
Material Management Techniques:	
Introduction to MRP I, MRP II, ERP, LOB (Line of Balance), JIT and	
KANBAN system.	
Unit – 4	
Routing & Scheduling – definition – routing procedure –route sheets	
– bill of material – factors affecting routing procedure, schedule –	10
definition – difference with loading, Scheduling policies – techniques,	10
standard scheduling methods, line balancing, aggregate planning	

Unit - 5

Dispatching— activities of dispatcher — dispatching procedure — follow up— definition — reason for existence of functions — types of follow up, expediting, controlling aspects. Applications of computer in production planning and control.

8

Course outcomes:

On completion of this course, students will be be able to:

- Choose the acceptable production planning and control system for designing and development of a product.
- 2. **Examine** the forecasts made in the manufacturing and service sectors by using selected quantitative and qualitative techniques.
- 3. **Categorize** the production systems based on the inventory principles and techniques to optimize/make best use of resources.
- 4. **Select and use** an appropriate principles/methods/ techniques/ modern concept with reference to given application/situation in the preparation of route sheets with scheduling and loading in manufacturing systems
- 5. **Illustrate** the role of a dispatching and follow-up necessary at various stages of manufacturing in an industry.

1

Text Books:

- 1. Elements of Production Planning and Control / Samuel Eilon.
- Manufacturing, Planning and Control, Partik Jonsson Stig-Arne Mattsson, Tata Mc Graw Hill.
- 3. MECHATRONICS Integrated Mechanical Electronics Systems/KP Ramachandran, GK Vijaya Raghavan & MS Balasundaram/WILEY India Edition

Reference Books:

- 1. Production Planning and Control, Mukhopadyay, PHI.
- Inventory Control Theory and Practice / Martin K. Starr and David W. Miller/Prentice- Hall
- 3. Production Control A Quantitative Approach / John E. Biegel/Prentice-Hall

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full questions by selecting one question from each course outcome (Internal Choice)
- 2. CO1- CO5 questions carries 14 marks each.
- Each full question will have a sub question covering all topics under a course outcome.

NON-0	CONVENTIONAL SOURC SEMESTER-XX		Y
Subject code	18XXMEOX0XG	Internal marks	30
Number of lecture hours/Week	3(L)	External marks	70
Total No Of lecture hours	50	Exam hours	03

Credits-03

Course Objectives:

Enable the students to:

- 1. Understand the principles and working of solar and solar energy collection.
- 2. Apply the principles of solar energy storage, applications in generation of electric power.
- 3. Apply the knowledge of Wind energy and Biomass, in generation of electric power production.
- 4. Apply the Principles and working of Geothermal energy power plant, OTEC plants, tidal, wave energy and Mini hydel power plants in generation of the electric power
- Apply the principles of direct energy conversion systems like Thermoelectric generators, MHD generators and fuel cells, in generation of electric power production

Unit-1	Hours
Principles of Solar Radiation: Role and potential of new and	
renewable source, the solar energy option, Environmental impact	
of solar power - the solar constant, extra-terrestrial and terrestrial	
solar radiation, Solar radiation on titled surface, Instruments for	8
measuring solar radiation and sun shine, solar radiation data.	
Solar Energy Collection: Flat plate and concentrating collectors,	
classification of concentrating collectors, advanced collectors	
Unit-2	
Solar Energy Storage and Applications: Different methods,	
sensible, latent heat and stratified storage, solar ponds. Solar	6
applications - solar heating/cooling techniques, solar distillation	O
and drying, photovoltaic energy conversion.	
Unit-3	

Wind Energy: Sources and potentials, horizontal and vertical	
axis windmills, performance characteristics, Betz criteria	
Bio-Mass: Principles of Bio-Conversion, Anaerobic /aerobic	10
digestion, types of Bio-gas digesters, gas yield, combustion	10
characteristics of biogas, utilization for cooking, I.C. Engine	
operation, and economic aspects.	
Unit-4	
Geothermal Energy: Resources, types of wells, methods of	
harnessing the energy, potential in India. Ocean Energy – OTEC,	
Principles, utilization, setting of OTEC plants, thermodynamic	10
cycles.	10
Tidal and Wave energy: Potential and conversion techniques,	
mini-hydel power plants, their economics.	
Unit-5	
Direct Energy Conversion: Need for DEC, Carnot cycle,	
limitations, Principles of DEC. Thermoelectric generators,	
Seebeck, Peltier and Joule Thompson effects, figure of merit,	
materials, applications, MHD generators, principles, dissociation	
and ionization, hall effect, magnetic flux, MHD accelerator, MHD	16
engine, power generation systems, electron gas dynamic	
conversion, economic aspects. Fuel cells, principle, faraday's	
laws, thermodynamic aspects, selection of fuels and operating	
conditions.	
~	

- The student understands the principles and working of solar and solar energy collection.
- 2. The students apply the principles of solar energy storage, applications in power generation.
- 3. The students Apply the knowledge of Wind energy and Biomass, in generation of power
- 4. The students Apply the Principles and working of Geothermal energy power plant, OTEC plants, tidal, wave energy and Mini hydel power plants in generation of the electric power.
- 5. Apply the principles of direct energy conversion systems like Thermoelectric generators, MHD generators and fuel cells, in generation of electric power.

Text books:

- 1. Renewable Energy Resources / Tiwari and Ghosal / Narosa
- 2. Non- conventional Energy Sources / G.D. Rai/ Khanna Publishers
- Biological Energy Resources/ Malcolm Fleischer & Chris Lawis/ E&FN Spon

Reference books:

- 1. Renewable Energy Sources / Twidell& Weir
- 2. Solar Power Engineering / B.S. Magal Frank Kreith& J.F. Kreith
- 3. Principles of Solar Energy / Frank Krieth& John F Kreider
- 4. Non-Conventional Energy / Ashok V Desai / Wiley Eastern

- 1. Question paper contains 10 questions,2 from each course outcomes, the student must answer 5 full questions by selecting one question from each course outcome (Internal choice)
- 2. All question carries 14 marks each
- Each full question will have sub question covering all topics under a course outcome

FLUID MECHANICS AND FLUID MACHINERY SEMESTER -XX			
Subject Code	18XXMEOX0XH	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03

Credits - 03

- 1. Understand the fundamental properties of fluid and calculate fluid pressure using the manometer.
- 2. Apply the differential conservation equations of mass, momentum, and energy to fluid flow problems.
- 3. Evaluate major and minor losses in pipes and also discuss boundary layer concepts.
- 4. Solve problems on the turbo machines like turbines using analytical method and velocity triangles.
- 5. Discuss the Classification and working principles of pumps and evaluate the performance of hydraulic machines.

Unit -1	Hours
Fluids: Definition of fluid, Fluid properties, Atmospheric gauge and vacuum pressure – measurement of pressure. Manometers-Piezometer, U-tube, inverted and differential manometers. Pascal's law, hydrostatic law. Buoyancy, forces on submerged bodies, stability of floating bodies.	10

Unit -2

Fluid Kinematics: Introduction, flow types. Equation of continuity for one dimensional flow. Stream line, path line and streak lines and stream tube. Stream function and velocity potential function. Fluid Dynamics: surface and body forces —Euler's and Bernoulli's equations for flow along a stream line, momentum equation and its applications, force on pipe bend.	10
Unit – 3	
Closed Conduit Flow: Reynold's experiment- Darcy Weisbach equation, Minor losses in pipes- pipes in series and pipes in parallel-total energy line hydraulic gradient line. Basics of Turbo Machinery: Hydrodynamic force of jets on stationery and moving flat, inclined, and curved vanes, jet striking centrally and at tip, velocity diagrams, work done and efficiency, flow over radial vanes.	10
Unit – 4	
Turbines: Hydraulic Turbines: classification of turbines, Working and efficiencies of Pelton wheel, Francis and Kaplan turbines. Importance of Draft Tube. Hydraulic Quantities: Unit and specific quantities, characteristic curves, governing of turbines, selection of type of turbine, cavitation, surge tank, water hammer.	10
Unit – 5	
	10
Pumps: Centrifugal Pumps: Classification, working, work done — manometric head losses and efficiencies- specific speed- pumps in series and parallel performance characteristic curves, cavitation & NPSH. Reciprocating Pumps: Working, Discharge, slip, indicator diagrams.	

- 2.Identify the kinematics and dynamics properties of fluids flowing in different conditions and its effects on the bodies.
- 3.Estimate the effect of various losses in fluids due to flowing and obstructions and understand using the concepts of pipe losses and Boundary layer theory.
- 4. Analyze the performance of hydraulic turbines, units and specific quantities based on the design by applying the knowledge of turbomachinery using analytical methods and velocity triangles.
- 5. Analyze the performance of various hydraulic pumps based on workings and design.

TEXT BOOKS

- 1. Hydraulics, fluid mechanics and Hydraulic machinery Modi and Seth
- 2. Fluid Mechanics and Hydraulic Machines/ RK Bansal/Laxmi Publications (P) Ltd.

REFERENCE BOOKS

- 1. Fluid Mechanics and Hydraulic Machines by Rajput
- 2. Fluid Mechanics & Turbo machinery by Dixon, 7th Edn, Elesvier
- 3. Fluid Mechanics and Machinery by D. Rama Durgaiah, New Age International
- 4. Fluid Mechanics- Fundementals and Applications by Y.A. Cengel, J.M.Cimbala, 6th Edn, McGrawHill
- Fluid Mechanics and Fluid Power Engineering by D.S. Kumar, Kotaria& Sons

- 1. Question paper contains 10 Questions, 2 from each course outcome. The student must answer 5 full
- questions by selecting one question from each course outcome (Internal Choice)
- 2. All questions carries 14 marks each
- 3. Each full question will have sub question covering all topics under a course outcome